summaryrefslogtreecommitdiff
path: root/instrument.c
blob: edb2f766c8dfbfd699e157d19de102267098efcf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#include "instrument.h"
#include <math.h>
#include <stdlib.h>

/* A hard limit */
#define REVERB_MAX 0

/* This is not exposed to other files, as this should be controlled by
   individual instruments. */
typedef struct {
  float freq;
  float amp;
  unsigned char pred;           /* if this is 0, then no frequency
                                   modulation is present. */
} FM;

/* By similar reasoning, ADSR is not exposed either. */
typedef struct {
  float attack_p;
  float decay_p;
  float sustain_p;
  float release_p;
  float sustain_level;
  unsigned char pred;           /* If this is 0 then the instrument
                                   does not adapt the ADSR model. */
} ADSR;

/* NOTE: The default method for an instrument to produce sounds is in
   accordance with its FM, ADSR, and Fourier coefficients.  But
   individual instruments can override that default method by
   providing their own functions.  This way we would have more
   flexibility. */

struct Instrument_s {
  float *sin_coefs;             /* coefficients of sin in the Fourier
                                   expansion. */
  float *cos_coefs;             /* coefficients of cos in the Fourier
                                   expansion. */
  sound_t sound;                /* the function to produce sounds. */
  merger_t merger;              /* the function to merge waves. */
  float reverb;                 /* The percentage of reverberation. */
  FM fm;
  ADSR adsr;
};

WaveFrag
make_sound(Instrument * in, Volume v, Hertz h, Seconds s)
{
  return in->sound(in, v, h, s);
}

U_ATTR
WaveFrag
merge_waves(Instrument *in, WaveFrag *frags, LENT len, int step)
{
  return in->merger(in, frags, len, step);
}

/* Now comes various instruments */

/* The first is piano */

UH_ATTR
static float
smooth_step(float t)
{
  if (t <= 0.0f) {
    return 0.0f;
  } else if (t >= 1.0f) {
    return 1.0f;
  } else {
    return 6*pow(t, 5)-15*pow(t, 4)+10*pow(t, 3);
  }
}

UH_ATTR
static float
old_piano_sound_internal(Instrument *piano, float theta)
{
  return sin(theta)+1.869*sin(2.0f*theta)+0.042f*sin(3.0f*theta)
    +0.022f*sin(4.0f*theta)+cos(theta);
}

UH_ATTR
static float
piano_sound_internal(Instrument *piano, float theta)
{
  return (*(piano->sin_coefs) * sin(theta)+
          *(piano->sin_coefs+1) * sin(2.0f*theta)+
          *(piano->sin_coefs+2) * sin(3.0f*theta))*
    exp(-0.004f*theta); 
}

UH_ATTR
WaveFrag
piano_sound(void * in, Volume v, Hertz h, Seconds s)
{
  Instrument *piano = (Instrument *)in;
  
  float step = (float) (h * 2 * M_PI) / SAMPLE_RATE;
  LENT sample_num = (LENT) floor(SAMPLE_RATE * s);
  
  Wave w = MYALLOC(Pulse, sizeof(*w) * sample_num);
  
  float theta = 0.0f, temp = 0.0f;
  
  for (LENT i = 0; i < sample_num; i++, theta += step) {
    temp = piano_sound_internal(piano, theta);
    temp += temp*temp*temp;
    *(w+i) = (float) v * piano_sound_internal(piano, temp);
  }

  return (WaveFrag) { w, sample_num };
}

/* Just concatenates waves together. */
UH_ATTR
WaveFrag
simple_merger(void *in, WaveFrag *frags, LENT len, int step)
{
  WaveFrag wf;

  LENT total_len = 0;

  for (LENT i = 0; i < len; i += step)
    total_len += (frags+i)->n;

  wf.n = total_len;
  wf.w = MYALLOC(Pulse, total_len);

  for (LENT i = 0, counter = 0, local = 0;
       i < len && counter < total_len;
       i += step) {
    local = (frags+i)->n;
    
    for (LENT j = 0; j < local;)
      *(wf.w+counter++) = *((frags+i)->w+j++);
    
    free((frags+i)->w);
  }

  free(frags);

  return wf;  
}

Instrument *make_piano()
{
  Instrument *ins = malloc(sizeof *ins * 1);

  /* The piano's sound is simulated directly by some coefficients. */
  ins->fm.pred = 0;
  ins->adsr.pred = 0;
  ins->sin_coefs = malloc(sizeof(*(ins->sin_coefs)) * 3);
  ins->cos_coefs = malloc(sizeof(*(ins->cos_coefs)) * 1);
  ins->reverb = 0.0f;

  *(ins->sin_coefs) = 0.65f;
  *(ins->sin_coefs+1) = 0.45f;
  *(ins->sin_coefs+2) = 0.1f;
  *(ins->cos_coefs) = 1;
  ins->sound = piano_sound;
  ins->merger = simple_merger;

  return ins;
}

void
destroy_piano(Instrument *in)
{
  free(in->sin_coefs);
  free(in->cos_coefs);
  free(in);
}

/* Then comes violin */

UH_ATTR
Pulse
violin_sound_internal(Instrument *in, float theta)
{
  /* return -1.0f*fmod(theta, 2.0f*M_PI)/M_PI + 1.0f; */
  /* return (*(in->sin_coefs)*sin(theta)+
   *         *(in->sin_coefs+1)*sin(2.0f*theta)+
   *         *(in->sin_coefs+2)*sin(3.0f*theta)+
   *         *(in->sin_coefs+3)*sin(4.0f*theta)+
   *         *(in->sin_coefs+4)*sin(5.0f*theta)); */
  Pulse result = 0.0f;
  for (int i = 0; i < 26; i++)
    result += *(in->sin_coefs+i) * sin((float) (i+1)*theta);
  /* result = sin(theta); */
  
  return result;
}

UH_ATTR
WaveFrag
violin_sound(void * in, Volume v, Hertz h, Seconds s)
{
  Instrument *violin = (Instrument *)in;
  
  /* We produce a little more samples so that we can create the effect
     of reverberation later on. */
  s *= (1.0f+violin->reverb);
  
  float step = (float) (h * 2 * M_PI) / SAMPLE_RATE;
  LENT sample_num = (LENT) floor(SAMPLE_RATE * s);
  float attack_step = 1.0f / (float) (sample_num * violin->adsr.attack_p);
  float decay_step = 1.0f / (float) (sample_num * violin->adsr.decay_p);
  float sustain_step = 1.0f / (float) (sample_num * violin->adsr.sustain_p);
  float release_step = 1.0f / (float) (sample_num * violin->adsr.release_p);

  Wave w = MYALLOC(Pulse, sizeof(*w) * sample_num);
  
  float theta = 0.0f, temp = 0.0f, adsrcounter = 0.0f;

  unsigned char phase = 0, sustain_flag = 0;
  
  for (LENT i = 0; i < sample_num; i++, theta += step) {
    temp = violin_sound_internal(violin, theta);
    /* temp += temp*temp*temp; */
    /* *(w+i) = (float) v * temp * ((sustain_flag) ? SUSTAIN_LEVEL : adsrcounter); */
    *(w+i) = (float) v * temp;
    
    switch (phase) {
    case 0:                     /* attack phase */
      adsrcounter += attack_step;
      if (adsrcounter >= 1.0f) {
        adsrcounter = 1.0f;
        phase++;
      }
      break;
    case 1:                     /* decay phase */
      adsrcounter -= decay_step;
      if (adsrcounter <= SUSTAIN_LEVEL) {
        adsrcounter = 0.0f;
        sustain_flag = 1;
        phase++;
      }
      break;
    case 2:                     /* sustain phase */
      adsrcounter += sustain_step;
      if (adsrcounter >= 1.0f) {
        adsrcounter = SUSTAIN_LEVEL;
        sustain_flag = 0;
        phase++;
      }
      break;
    default:                    /* release phase */
      adsrcounter -= release_step;
      if (adsrcounter <= 0.0f) adsrcounter = 0.0f;
      break;
    }
  }

  return (WaveFrag) { w, sample_num };
}

UH_ATTR
WaveFrag
violin_merger(void *in, WaveFrag *frags, LENT len, int step)
{
  Instrument *violin = (Instrument*) in;
 
  WaveFrag wf, local_last_wave = (WaveFrag) { NULL, 0 };
  WaveFrag local_current_wave = (WaveFrag) { NULL, 0 };
  WaveFrag local_mix_wave, local_mix_input[2];

  LENT total_len = 0;
  
  float reverb_ratio = 1.0f / (1.0f + violin->reverb);

  for (LENT i = 0; i < len; i += step)
    total_len += (LENT) ((frags+i)->n * reverb_ratio);

  wf.n = total_len;
  wf.w = MYALLOC(Pulse, total_len);

  for (LENT i = 0, counter = 0, local = 0, local_last = 0;
       i < len && counter < total_len;
       i += step) {
    /* The last fragment that we want to mix. */
    local_last = (!i) ? 0 : (frags+i-1)->n - local;
    local = (LENT) ((frags+i)->n * reverb_ratio);
    /* Make sure everything stays within bounds. */
    local_last = min(local_last, local);
    local_last = min(local_last, REVERB_MAX);

    if (local_last && i) {
      /* If we reach here then i > 0. */
      local_last_wave.n = local_last;
      local_last_wave.w = realloc(local_last_wave.w,
                                  sizeof(Pulse) * local_last);

      local_current_wave.n = local_last;
      local_current_wave.w = realloc(local_current_wave.w,
                                     sizeof(Pulse) * local_last);
      
      for (LENT j = 0; j < local_last; j++) {
        *(local_last_wave.w+j) =
          *((frags+i-1)->w+(frags+i-1)->n-local_last+j);

        *(local_current_wave.w+j) = *((frags+i)->w+j);
      }

      local_mix_input[0] = local_last_wave;
      local_mix_input[1] = local_current_wave;

      local_mix_wave = mix_waves(local_mix_input, 2);

      for (LENT j = 0; j < local_last;)
        *(wf.w+counter++) = *(local_mix_wave.w+j++);

      free(local_mix_wave.w);
      
      for (LENT j = local_last; j < local;)
        *(wf.w+counter++) = *((frags+i)->w+j++);
    } else {
      for (LENT j = 0; j < local;)
        *(wf.w+counter++) = *((frags+i)->w+j++);
    }
    
    free((frags+i)->w);
  }

  free(local_last_wave.w);
  free(local_current_wave.w);

  free(frags);

  return wf;  
}

UH_ATTR
Instrument *
make_violin()
{
  Instrument * violin= malloc(sizeof *violin);
  
  violin->fm.pred = 0;
  violin->adsr.pred = 1;
  
  violin->reverb = 0.01f;
  violin->adsr.attack_p = 0.55;
  violin->adsr.release_p = 0.25;
  violin->adsr.decay_p = 0.05;
  violin->adsr.sustain_p = max(1.0f - (violin->adsr.attack_p+
                                       violin->adsr.decay_p+
                                       violin->adsr.release_p),
                               0.0f);
  violin->adsr.sustain_level = 0.9;
  
  double temp [] = {
    1.0, 0.399064778, 0.229404484, 0.151836061,
    0.196754229, 0.093742264, 0.060871957,
    0.138605419, 0.010535002, 0.071021868,
    0.029954614, 0.051299684, 0.055948288,
    0.066208224, 0.010067391, 0.00753679,
    0.008196947, 0.012955577, 0.007316738,
    0.006216476, 0.005116215, 0.006243983,
    0.002860679, 0.002558108, 0.0, 0.001650392
  };
  
  violin->sin_coefs = malloc(sizeof(float)*26);
  for (int i = 0; i < 26; i++)
    *(violin->sin_coefs+i) = *(temp+i);
  /* *(violin->sin_coefs) = 1.0f;
   * *(violin->sin_coefs+1) = 0.41f;
   * *(violin->sin_coefs+2) = 0.35f;
   * *(violin->sin_coefs+3) = 0.39f;
   * *(violin->sin_coefs+4) = 0.45f;
   * *(violin->sin_coefs+5) = 0.35f;
   * *(violin->sin_coefs+6) = 0.5f;
   * *(violin->sin_coefs+7) = 0.4f;
   * *(violin->sin_coefs+8) = 0.35f;
   * *(violin->sin_coefs+9) = 0.1f; */

  violin->sound = violin_sound;
  violin->merger = simple_merger;

  return violin;
}

UH_ATTR
void
destroy_violin(Instrument *in)
{
  free(in->sin_coefs);
  free(in);
}