summaryrefslogtreecommitdiff
path: root/viz/src/strong_component.rs
blob: 37dcd39b8050fc205936bf08877248a2e77f4dcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! This module implements the Trajan's algorithm for finding strongly
//! connected components of a directed graph with only one depth-first
//! traversal.

use graph::{error::Error, Graph};
use std::borrow::Borrow;

/// This function accepts a graph and returns a list of strongly
/// connected components, represented as a list of nodes.
pub fn tarjan<B, G>(g: B) -> Result<Vec<Vec<usize>>, Error>
where
    B: Borrow<G>,
    G: Graph,
{
    let g = g.borrow();

    // List of components
    let mut components: Vec<Vec<usize>> = Vec::new();

    // List of depth levels of nodes
    let mut indices: Vec<usize> = vec![0; g.nodes_len()];

    indices.shrink_to_fit();

    // List of low link numbers of nodes
    let mut lowlinks: Vec<usize> = indices.clone();

    // The stack used in Trajan's algorithm
    let mut tarjan_stack: Vec<usize> = Vec::new();

    // The list of booleans to indicate whether a node is waiting on
    // the stack
    let mut waiting: Vec<bool> = vec![false; g.nodes_len()];

    waiting.shrink_to_fit();

    // a struct to simplify recursing

    #[derive(Debug)]
    enum StackElement {
        Seen(usize, Vec<usize>),
        Unseen(usize),
    }

    use StackElement::{Seen, Unseen};

    // convenient macros

    macro_rules! index {
        ($num: ident) => {
            indices.get($num).copied().unwrap()
        };
    }

    macro_rules! lowlink {
        ($num: ident) => {
            lowlinks.get($num).copied().unwrap()
        };
    }

    // The stack used to replace recursive function calls
    let mut recursive_stack: Vec<StackElement> = Vec::new();

    // The next index to assign
    let mut next_index: usize = 1;

    for node in g.nodes() {
        if indices.get(node).copied() == Some(0) {
            recursive_stack.push(Unseen(node));

            'recursion: while let Some(stack_element) = recursive_stack.pop() {
                let stack_node: usize;

                match stack_element {
                    Seen(node, children) => {
                        stack_node = node;

                        for child in children {
                            *lowlinks.get_mut(node).unwrap() =
                                std::cmp::min(lowlink!(node), lowlink!(child));
                        }
                    }

                    Unseen(node) => {
                        stack_node = node;

                        tarjan_stack.push(node);

                        // It is safe to unwrap here since the
                        // condition of the if clause already serves
                        // as a guard.
                        *indices.get_mut(node).unwrap() = next_index;
                        *lowlinks.get_mut(node).unwrap() = next_index;
                        *waiting.get_mut(node).unwrap() = true;

                        next_index += 1;

                        let mut node_index: Option<usize> = None;

                        for child in g.children_of(node)? {
                            // Ignore self-loops
                            if node == child {
                                continue;
                            }

                            match indices.get(child).copied() {
                                Some(0) => {
                                    match node_index {
                                        Some(index) => match recursive_stack.get_mut(index) {
                                            Some(Seen(_, children)) => {
                                                children.push(child);
                                            }
                                            Some(_) => {
                                                unreachable!("wrong index: {index}");
                                            }
                                            None => {
                                                unreachable!("index {index} out of bounds");
                                            }
                                        },
                                        None => {
                                            node_index = Some(recursive_stack.len());

                                            let mut children = Vec::with_capacity(g.degree(node)?);
                                            children.push(child);

                                            recursive_stack.push(Seen(node, children));
                                        }
                                    }

                                    recursive_stack.push(Unseen(child));
                                }
                                Some(_) if waiting.get(child).copied().unwrap() => {
                                    *lowlinks.get_mut(node).unwrap() =
                                        std::cmp::min(lowlink!(node), index!(child));
                                }
                                None => {
                                    return Err(Error::IndexOutOfBounds(child, g.nodes_len()));
                                }
                                _ => {
                                    // crossing edges are ignored
                                }
                            }
                        }

                        if node_index.is_some() {
                            continue 'recursion;
                        }
                    }
                }

                if lowlink!(stack_node) == index!(stack_node) {
                    let mut component: Vec<usize> = Vec::new();

                    while let Some(top) = tarjan_stack.pop() {
                        *waiting.get_mut(top).unwrap() = false;

                        component.push(top);

                        if top == stack_node {
                            components.push(component);

                            break;
                        }
                    }
                }
            }
        }
    }

    Ok(components)
}

#[cfg(test)]
mod tests {
    use super::*;
    use graph::adlist::{ALGBuilder, ALGraph};
    use graph::builder::Builder;

    use std::collections::BTreeSet as Set;

    fn make_cycle(n: usize) -> Result<ALGraph, graph::error::Error> {
        let mut builder = ALGBuilder::default();

        builder.add_vertices(n);

        for i in 0..(n - 1) {
            builder.add_edge(i, i + 1, ())?;
        }

        builder.add_edge(n - 1, 0, ())?;

        Ok(builder.build())
    }

    fn make_two_cycles(n: usize) -> Result<ALGraph, graph::error::Error> {
        let mut builder = ALGBuilder::default();

        builder.add_vertices(2 * n);

        for i in 0..(2 * n - 1) {
            builder.add_edge(i, i + 1, ())?;
        }

        builder.add_edge(n - 1, 0, ())?;
        builder.add_edge(n - 2, 0, ())?; // random noise
        builder.add_edge(0, n - 1, ())?; // random noise
        builder.add_edge(0, 2 * n - 1, ())?; // random noise
        builder.add_edge(2 * n - 1, n, ())?;

        Ok(builder.build())
    }

    #[test]
    fn test_cycle() -> Result<(), Box<dyn std::error::Error>> {
        let length = 10;

        let cycle = make_cycle(length)?;

        let components = tarjan::<_, ALGraph>(&cycle)?;

        println!("components = {components:?}");

        assert_eq!(components.len(), 1);

        let set: Set<usize> = components.first().unwrap().into_iter().copied().collect();

        let answer: Set<usize> = (0..length).collect();

        assert_eq!(set, answer);

        Ok(())
    }

    #[test]
    fn test_two_components() -> Result<(), Box<dyn std::error::Error>> {
        let half_length = 10;

        let graph = make_two_cycles(half_length)?;

        let components = tarjan::<_, ALGraph>(graph)?;

        println!("components = {components:?}");

        assert_eq!(components.len(), 2);

        let first_set: Set<usize> = components.get(0).unwrap().into_iter().copied().collect();
        let first_answer: Set<usize> = (half_length..(2 * half_length)).collect();

        let second_set: Set<usize> = components.get(1).unwrap().into_iter().copied().collect();
        let second_answer: Set<usize> = (0..half_length).collect();

        assert_eq!(first_set, first_answer);
        assert_eq!(second_set, second_answer);

        Ok(())
    }
}