1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
//! This file implements a recursive structure that implements the
//! recursion scheme traits, representing trees.
//!
//! The tree is backed by a vector.
use crate::{
algebra::Algebra,
catana::{Ana, Cata},
coalgebra::Coalgebra,
functor::Functor,
hylo::Hylo,
};
use std::{collections::VecDeque, mem::MaybeUninit, ops::Deref};
/// The evaluation strategy for the tree.
#[derive(Default, Debug, Copy, Clone)]
pub enum TEStrategy {
#[default]
/// This strategy uses an arena, and uses an `Option<T>` to store
/// the data.
///
/// # Comparison:
///
/// Since it is an arena, it saves allocations, compared to the
/// variant [`DepthFirst`][TEStrategy::DepthFirst]. But it needs
/// indices to operate, so uses more memory.
///
/// On the other hand, it uses an option, so is slower than the
/// variant [`UnsafeArena`][TEStrategy::UnsafeArena], but avoids
/// unsafe code altogether. Applications can first use this
/// variant to make sure the algorithm works, before converting to
/// use the unsafe variant.
SafeArena,
/// This strategy uses an arena, and uses an `MaybeUninit` to
/// store the data.
///
/// # Comparison:
///
/// Since it is an arena, it saves allocations, compared to the
/// variant [`DepthFirst`][TEStrategy::DepthFirst]. But it needs
/// indices to operate, so uses more memory.
///
/// On the other hand, it uses a `MaybeUninit`, so is faster than
/// the variant [`SafeArena`][TEStrategy::SafeArena], but uses
/// unsafe code. Applications can first use the safe variant to
/// make sure the algorithm works, before converting to use this
/// variant.
UnsafeArena,
/// This strategy uses a plain vector.
///
/// # Comparison:
///
/// Since it is a plain vector, it uses more allocations, compared
/// to other variants. But it does not use indices, so consumes
/// less memory.
///
/// # Warning
///
/// Since it uses no indices, it relies on the depth-first order
/// of the elements to correctly find elements. This puts a
/// requirement on the implementation of the [`Functor`] trait.
DepthFirst,
}
/// A tree is just a wrapper around a vector.
///
/// # Warning
///
/// The tree is supposed to be stored in topological order. This
/// order is used in a critical way in the implementations of
/// recursion schemes. Violations of this assumption are fatal to
/// using those trait methods.
#[derive(Clone, Debug)]
pub struct Tree<T> {
elements: Vec<T>,
strategy: TEStrategy,
}
impl<T> Tree<T> {
#[inline]
/// Construct a new tree.
pub fn new(elements: Vec<T>, strategy: TEStrategy) -> Self {
Self { elements, strategy }
}
/// Just a function for testing.
///
/// # Warning
///
/// This is definitely going to be removed in the future.
pub fn nth(&self, n: usize) -> Option<&T> {
self.elements.get(n)
}
#[inline]
/// Retrieve the strategy of the tree.
pub fn strategy(&self) -> TEStrategy {
self.strategy
}
#[inline]
/// Set the strategy of the tree.
pub fn set_strategy(&mut self, strategy: TEStrategy) {
self.strategy = strategy;
}
}
// Manual implementation can avoid unnecessary requirement on the
// parameter `T`.
impl<T> Default for Tree<T> {
fn default() -> Self {
let elements = Vec::new();
let strategy = TEStrategy::default();
Self { elements, strategy }
}
}
#[derive(Debug, Copy, Clone)]
/// A thin wrapper around `usize`, to index vectors.
///
/// By means of the [*newtype
/// pattern*](https://doc.rust-lang.org/rust-by-example/generics/new_types.html)
/// in Rust, it is supposed to be treated as a simple `usize` in the
/// compiled codes.
pub struct TreeIndex(usize);
impl TreeIndex {
/// Wrap an index in this type.
pub fn new(index: usize) -> Self {
Self(index)
}
}
impl Deref for TreeIndex {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T, F, G, A> Cata<T, F, A> for Tree<G>
where
F: Functor<T>,
G: Functor<TreeIndex, Target<T> = F>,
A: Algebra<T, F>,
{
fn cata(self, mut alg: A) -> T {
// First deal with the safe case
match self.strategy {
TEStrategy::SafeArena => {
let mut results: Vec<Option<T>> = std::iter::repeat_with(Default::default)
.take(self.elements.len())
.collect();
for (index, node) in self.elements.into_iter().enumerate().rev() {
let algebra_result = {
let node = node.fmap::<T>(|index| {
std::mem::replace(&mut results[*index], None).unwrap()
});
alg(node)
};
// Artificially use this value to satisfy the compiler.
let _ = std::mem::replace(&mut results[index], Some(algebra_result));
}
std::mem::replace(&mut results[0], None).unwrap()
}
TEStrategy::UnsafeArena => {
let mut results: Vec<MaybeUninit<T>> = std::iter::repeat_with(MaybeUninit::uninit)
.take(self.elements.len())
.collect();
for (index, node) in self.elements.into_iter().enumerate().rev() {
let algebra_result = {
let node = node.fmap::<T>(|index| unsafe {
std::mem::replace(&mut results[*index], MaybeUninit::uninit())
.assume_init()
});
alg(node)
};
results[index].write(algebra_result);
}
unsafe { std::mem::replace(&mut results[0], MaybeUninit::uninit()).assume_init() }
}
TEStrategy::DepthFirst => {
let mut results_stack: Vec<T> = Vec::new();
for node in self.elements.into_iter().rev() {
// Replace each node data with the value from the
// results stack.
let mapped_node = node.fmap(|_| results_stack.pop().unwrap());
results_stack.push(alg(mapped_node));
}
results_stack.pop().unwrap()
}
}
}
}
impl<T, F, G, C> Ana<T, F, C> for Tree<G>
where
F: Functor<T, Target<TreeIndex> = G>,
G: Functor<TreeIndex>,
C: Coalgebra<T, F>,
{
/// An anamorphism takes a single, flat, collapsed value and a
/// co-algebra for a recursive structure, and returns that
/// recursive structure.
///
/// # Descriptions
///
/// This always generates a tree which uses the default strategy.
/// If one wants to use a different strategy, set the strategy
/// after generating the tree.
///
/// # See also
///
/// To use the depth first strategy to generate the tree, use the
/// wrapper struct [`DFTree`].
fn ana(value: T, mut coalg: C) -> Self {
let mut queue = VecDeque::new();
queue.push_back(value);
let mut elements = vec![];
let strategy = TEStrategy::default();
while let Some(value) = queue.pop_back() {
let expanded_layer = coalg(value);
let mapped_layer = expanded_layer.fmap::<TreeIndex>(|value| {
queue.push_back(value);
TreeIndex(elements.len() + queue.len())
});
elements.push(mapped_layer);
}
Self { elements, strategy }
}
}
/// To generate a tree with the strategy
/// [`DepthFirst`][TEStrategy::DepthFirst], we use a wrapper struct
/// which implements [`Ana`] in the desired manner.
#[derive(Debug, Clone)]
pub struct DFTree<T>(Tree<T>);
impl<T> DFTree<T> {
#[inline]
/// Convert to the underlying tree.
pub fn to_tree(self) -> Tree<T> {
self.0
}
#[inline]
/// Wrap a tree.
pub fn new(tree: Tree<T>) -> Self {
Self(tree)
}
}
impl<T, F, G, C> Ana<T, F, C> for DFTree<G>
where
F: Functor<T, Target<TreeIndex> = G>,
G: Functor<TreeIndex>,
C: Coalgebra<T, F>,
{
/// An anamorphism takes a single, flat, collapsed value and a
/// co-algebra for a recursive structure, and returns that
/// recursive structure.
///
/// # Descriptions
///
/// This always generates a tree which uses the depth first
/// strategy. If one wants to use a different strategy, set the
/// strategy after generating the tree.
///
/// # See also
///
/// To use the default strategy to generate the tree, use the
/// original struct [`Tree`].
fn ana(value: T, mut coalg: C) -> Self {
let mut stack = Vec::new();
stack.push(value);
let mut elements = vec![];
let strategy = TEStrategy::DepthFirst;
while let Some(value) = stack.pop() {
let expanded_layer = coalg(value);
let mut local_stack = Vec::new();
let mapped_layer = expanded_layer.fmap::<TreeIndex>(|value| {
local_stack.push(value);
// The index is of no meaning here, since we rely on
// the depth-first order.
TreeIndex(0)
});
stack.extend(local_stack.into_iter().rev());
elements.push(mapped_layer);
}
Self::new(Tree::new(elements, strategy))
}
}
impl<T, U, F, G, H, A, C> Hylo<T, TreeIndex, U, F, G, H, A, C> for Tree<G>
where
F: Functor<T>,
G: Functor<TreeIndex, Target<T> = F>,
H: Functor<U, Target<TreeIndex> = G>,
A: Algebra<T, F>,
C: Coalgebra<U, H>,
{
fn hylo(value: U, mut alg: A, mut coalg: C) -> T {
// The hylomorphism ignores the tree. Maybe I will add
// different implementations later on.
let mut result_stack: Vec<T> = Vec::new();
let mut value_node_stack: Vec<Result<U, G>> = vec![Ok(value)];
while let Some(value_or_node) = value_node_stack.pop() {
match value_or_node {
Ok(value) => {
let node = coalg(value);
let mut local_values: Vec<U> = Vec::new();
let mapped_node = node.fmap(|node_value| {
local_values.push(node_value);
TreeIndex::new(0)
});
value_node_stack.push(Err(mapped_node));
value_node_stack.extend(local_values.into_iter().rev().map(Ok));
}
Err(node) => {
let mapped_node = node.fmap(|_| result_stack.pop().unwrap());
result_stack.push(alg(mapped_node));
}
}
}
result_stack.pop().unwrap()
}
}
// REVIEW: Para, Apo, Histo, and Futu await us.
|