1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
|
#![warn(missing_docs)]
//! This file implements the extected behaviours of grammars.
// NOTE: We shall first start with a parser that works at the level of
// characters. The purpose is to first experiment with the workings
// and the performance of the algorithms, before optimising by using
// regular expressions to classify inputs into tokens. In other
// words, the current focus is not on the optimisations, whereas
// scanners are for optimisations only, so to speak.
use nfa::{
default::{
nfa::DefaultNFA,
regex::{DefaultRegex, ParseError, RegexType},
},
LabelType, Nfa, NfaLabel, Regex, SoC, TwoEdges,
};
use graph::{adlist::ALGBuilder, builder::Builder, Graph};
use std::{
collections::{HashMap, HashSet},
fmt::Display,
};
/// The index of the starting non-terminal.
///
/// By convention this is the zero-th non-terminal. I define this
/// constant just for the sake of clarity.
pub const START_NONTERMINAL: usize = 0;
/// The type of a terminal.
///
/// For the time being this is a wrapper around a string, but in the
/// future it may hold more information of scanners.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Terminal {
// NOTE: If we want to use scanners, per chance add them as a new
// field here.
name: String,
}
impl Terminal {
/// Create a terminal with the given name.
#[inline]
pub fn new(name: String) -> Self {
Self { name }
}
/// Return the name of the terminal.
#[inline]
pub fn name(&self) -> &str {
&self.name
}
}
/// The type of a non-terminal.
///
/// This is just a wrapper around a string.
#[derive(Debug, Clone)]
pub struct Nonterminal(String);
impl Nonterminal {
/// Return the name of the nonterminal.
///
/// Just to improve readability.
#[inline]
pub fn name(&self) -> &str {
&self.0
}
}
/// The type of a terminal or a non-terminal.
///
/// Only an index is stored here. Actual data are stored in two other
/// arrays.
#[derive(Debug, Hash, Eq, PartialEq, Clone, Copy, Ord, PartialOrd)]
pub enum TNT {
/// Terminal variant
Ter(usize),
/// Nonterminal variant
Non(usize),
// TODO: Add a range type.
}
impl Display for TNT {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
TNT::Ter(t) => write!(f, "T({t})"),
TNT::Non(n) => write!(f, "N({n})"),
}
}
}
/// Errors related to grammar operations.
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum Error {
/// The operation requires the grammar to be after a certain
/// state, but the grammar is not after that state yet.
WrongState(GrammarState, GrammarState),
/// The first component is the index, and the second the bound.
IndexOutOfBounds(usize, usize),
/// The given name of a terminal or a non-terminal is unknown.
UnknownTNTName(String),
/// Fail to build the N-th regular expression, due to the
/// ParseError.
BuildFail(usize, ParseError),
/// fail to build NFA
NFAFail(nfa::error::Error),
}
impl From<nfa::error::Error> for Error {
fn from(nfae: nfa::error::Error) -> Self {
Self::NFAFail(nfae)
}
}
impl Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::IndexOutOfBounds(i, b) => write!(f, "index {i} out of bound {b}"),
Error::BuildFail(n, pe) => write!(
f,
"Failed to build the {n}-th regular expression due to error: {pe}"
),
Error::NFAFail(nfae) => write!(f, "failed to build NFA because of {nfae}"),
Error::UnknownTNTName(name) => write!(
f,
"the name {name} is unknown \
for a terminal or a non-terminal."
),
Error::WrongState(current, threshold) => {
write!(f, "require state {threshold}, but in state {current}")
}
}
}
}
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
if let Error::NFAFail(error) = self {
Some(error)
} else {
None
}
}
}
/// A rule is a regular expression of terminals or non-terminals.
#[derive(Debug, Clone)]
pub struct Rule {
regex: DefaultRegex<TNT>,
}
impl Rule {
/// Return true if and only if the rule is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.regex.is_empty()
}
/// Return the length of the rule.
#[inline]
pub fn len(&self) -> usize {
self.regex.len()
}
/// Wrap a regular expression into a rule.
#[inline]
pub fn new(regex: DefaultRegex<TNT>) -> Self {
Self { regex }
}
}
/// The state of Grammar.
///
/// This is used to ensure that the grammar preparation methods are
/// called in the correct order.
#[derive(Debug, Copy, Clone, Default)]
pub enum GrammarState {
/// Just initialized
#[default]
Initial,
/// compute_firsts has been called
AfterComputeFirst,
/// left_closure has been called.
AfterLeftClosure,
/// left_closure_to_nfa has been called.
AfterNFA,
}
impl Display for GrammarState {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use GrammarState::*;
match self {
Initial => write!(f, "initial"),
AfterComputeFirst => write!(f, "after computation of first set"),
AfterLeftClosure => write!(f, "after computation of closure"),
AfterNFA => write!(f, "after computation of NFA"),
}
}
}
/// This enum represents the name of either a terminal or a
/// non-terminal.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum TNTName {
/// The name of a terminal.
Ter(String),
/// The name of a non-terminal.
Non(String),
}
impl TNTName {
/// Construct the name of a terminal or a non-terminal.
#[inline]
pub fn new(name: String, terminal_p: bool) -> Self {
if terminal_p {
Self::Ter(name)
} else {
Self::Non(name)
}
}
/// Return the underlying name.
#[inline]
pub fn name(&self) -> &str {
match self {
TNTName::Ter(name) => name,
TNTName::Non(name) => name,
}
}
}
/// The type of a grammar.
#[derive(Debug, Clone, Default)]
pub struct Grammar {
/// A list of terminals.
ter: Vec<Terminal>,
/// A list of non-terminals.
non: Vec<Nonterminal>,
/// A map from the names of terminals or non-terminals to TNT.
tnt_map: HashMap<TNTName, TNT>,
/// A list of rules.
///
/// The length of the list must match that of the list of
/// non-terminals.
rules: Vec<Rule>,
/// The list of successive sums of lengths of rules.
accumulators: Vec<usize>,
// The following two attributes are empty until we call
// `compute_firsts` on the grammar.
/// The list of sets of "first terminals".
///
/// The length must match that of the list of non-terminals.
firsts: Vec<HashSet<Option<usize>>>,
/// The list of lists of nodes that are reachable after a nullable
/// transition in the regular expression.
///
/// The length must match that of the list of non-terminals.
first_nodes: Vec<Vec<usize>>,
// The following attribute is empty until we call `closure` on the
// NFA with `transform_label_null_epsilon` as the transformer.
/// A hash map that maps a tuple `(pos1, pos2)` of positions
/// `pos1` and `pos2` in the rules to a vector of non-terminals
/// and rule positions.
///
/// This vector means that in order to expand from `pos1` to
/// `pos`, it is necessary to expand according to the
/// non-terminals and positions in the vector, so we need to add
/// all these expansions into the parse forest later.
expansion_map: HashMap<(usize, usize), Vec<(usize, usize)>>,
/// A hash map that maps a tuple `(pos1, pos2)` of positions
/// `pos1` and `pos2` in the rules to a vector of non-terminals.
///
/// This vector means that in order to expand from `pos1` to
/// `pos`, it is necessary to expand according to the
/// non-terminals, so we can use this information to find out
/// where to join a new node in the parse forest later.
reduction_map: HashMap<(usize, usize), Vec<usize>>,
/// The state of the grammar, which tells us what information has
/// been computed for this grammar.
state: GrammarState,
}
/// A private type to aid the recursive looping of rergular
/// expressions.
#[derive(Copy, Clone, Debug)]
enum StackElement {
Seen(usize),
Unseen(usize),
}
impl StackElement {
fn index(self) -> usize {
match self {
Self::Seen(index) => index,
Self::Unseen(index) => index,
}
}
fn is_seen(self) -> bool {
matches!(self, Self::Seen(_))
}
}
impl Grammar {
/// Construct a grammar from a vector of terminals, a vector of
/// non-terminals, and a vector of rules for the non-temrinals.
///
/// # Panic
///
/// If the length of `non` is not equal to that of `rules`, then
/// the function panics.
pub fn new(ter: Vec<Terminal>, non: Vec<Nonterminal>, rules: Vec<Rule>) -> Self {
assert_eq!(non.len(), rules.len());
// One more room is reserved for the `None` value.
let firsts = std::iter::repeat_with(|| HashSet::with_capacity(ter.len() + 1))
.take(non.len())
.collect();
let first_nodes = rules
.iter()
.map(|rule| Vec::with_capacity(rule.len()))
.collect();
let state = Default::default();
let expansion_map = Default::default();
let reduction_map = Default::default();
let mut tnt_map: HashMap<TNTName, TNT> = Default::default();
for (index, ter_element) in ter.iter().enumerate() {
tnt_map.insert(
TNTName::new(ter_element.name().to_string(), true),
TNT::Ter(index),
);
}
for (index, non_element) in non.iter().enumerate() {
tnt_map.insert(
TNTName::new(non_element.name().to_string(), false),
TNT::Non(index),
);
}
// NOTE: We cannot calculate accumulators here, as we want the
// accumulators of the regular expression of the left-closure,
// not of the original one.
let accumulators = Vec::new();
Self {
ter,
non,
tnt_map,
rules,
firsts,
first_nodes,
state,
expansion_map,
reduction_map,
accumulators,
}
}
/// Convert from the name of a terminal or a non-terminal to a
/// struct TNT.
#[inline]
pub fn name_to_tnt(&self, name: &TNTName) -> Result<TNT, Error> {
self.tnt_map
.get(name)
.copied()
.ok_or_else(|| Error::UnknownTNTName(name.name().to_string()))
}
/// Return the name of a terminal or a non-terminal.
pub fn name_of_tnt(&self, tnt: TNT) -> Result<String, Error> {
match tnt {
TNT::Ter(t) => Ok(format!(
"T{}",
self.ter
.get(t)
.ok_or(Error::IndexOutOfBounds(t, self.ter.len()))?
.name()
.chars()
.map(|c| if crate::abnf::is_v_char(c) {
c.to_string()
} else {
format!("{:#x}", c as usize)
})
.collect::<Vec<_>>()
.join("")
)),
TNT::Non(n) => Ok(format!(
"N{}",
self.non
.get(n)
.ok_or(Error::IndexOutOfBounds(n, self.non.len()))?
.name()
)),
}
}
/// Return true if and only if there are no non-terminals in the
/// grammar.
#[inline]
pub fn is_empty(&self) -> bool {
self.non.is_empty()
}
/// Return the total length of all rules.
#[inline]
pub fn total(&self) -> usize {
self.accumulators.last().copied().unwrap_or(0)
}
/// Return an element of the accumulator.
#[inline]
pub fn nth_accumulator(&self, n: usize) -> Result<usize, Error> {
self.accumulators
.get(n)
.copied()
.ok_or_else(|| Error::IndexOutOfBounds(n, self.non_num()))
}
/// Return the index of the rules a rule position belongs to.
#[inline]
pub fn get_rule_num(&self, pos: usize) -> Result<usize, Error> {
let mut result = None;
for (index, accumulator) in self.accumulators.iter().copied().skip(1).enumerate() {
if accumulator > pos {
result = Some(index);
break;
}
}
if let Some(n) = result {
Ok(n)
} else {
Err(Error::IndexOutOfBounds(pos, self.total()))
}
}
/// Query if a position is the starting position of a
/// non-terminal. If it is, return the non-terminal, else return
/// `None`.
#[inline]
pub fn get_nt_start_in_nfa(&self, pos: usize) -> Option<usize> {
for (index, accumulator) in self.accumulators.iter().copied().enumerate() {
let shifted_accumulator = accumulator << 1;
// NOTE: Clippy suggests to call `cmp`, but it seems that
// the compiler might not yet be smart enough to inline
// that call, so I just silence clippy here.
#[allow(clippy::comparison_chain)]
if pos == shifted_accumulator {
return Some(index);
} else if pos < shifted_accumulator {
break;
}
}
None
}
/// Query if a position is the ending position of a
/// non-terminal. If it is, return the non-terminal, else return
/// `None`.
#[inline]
pub fn get_nt_end_in_nfa(&self, pos: usize) -> Option<usize> {
if pos >= 1 {
self.get_nt_start_in_nfa(pos - 1)
} else {
None
}
}
/// Return the number of terminals.
#[inline]
pub fn ter_num(&self) -> usize {
self.ter.len()
}
/// Return the number of non-terminals.
#[inline]
pub fn non_num(&self) -> usize {
self.non.len()
}
/// Convert a non-terminal `N` to `N + TER_NUM`, so that we use a
/// single number to represent terminals and non-terminals.
///
/// # Bounds
///
/// If a terminal index is greater than or equal to the number of
/// terminals, then this signals an error; mutatis mutandis for
/// non-terminals.
///
/// # Related
///
/// The inverse function is [`unpack_tnt`][Grammar::unpack_tnt].
#[inline]
pub fn pack_tnt(&self, tnt: TNT) -> Result<usize, Error> {
let ter_num = self.ter.len();
let non_num = self.non.len();
match tnt {
TNT::Ter(t) => {
if t >= ter_num {
Err(Error::IndexOutOfBounds(t, ter_num))
} else {
Ok(t)
}
}
TNT::Non(n) => {
if n >= non_num {
Err(Error::IndexOutOfBounds(n, non_num))
} else {
Ok(n + ter_num)
}
}
}
}
/// Convert a single number to either a terminal or a
/// non-terminal.
///
/// # Bounds
///
/// If the number is greater than or equal to the sum of the
/// numbers of terminals and of non-terminals, then this signals
/// an error.
///
/// # Related
///
/// This is the inverse of [`pack_tnt`][Grammar::pack_tnt].
///
/// # Errors
///
/// This function is supposed to return only one type of errors,
/// namely, the IndexOutOfBounds error that results from a bounds
/// check. Breaking this is breaking the guarantee of this
/// function, and is considered a bug. This behaviour can and
/// should be tested. But I have not found a convenient test
/// method for testing various grammars.
#[inline]
pub fn unpack_tnt(&self, flat: usize) -> Result<TNT, Error> {
let ter_num = self.ter.len();
let non_num = self.non.len();
if flat < ter_num {
Ok(TNT::Ter(flat))
} else if flat < ter_num + non_num {
Ok(TNT::Non(flat - ter_num))
} else {
Err(Error::IndexOutOfBounds(flat, ter_num + non_num))
}
}
/// Return true if and only if the terminal can appear as the
/// first terminal in a string expanded from the non-terminal.
///
/// # Errors
///
/// If `non_terminal` or `terminal` is out of bounds, the function
/// returns an error indicating this fact.
#[inline]
pub fn is_first_of(&self, non_terminal: usize, terminal: usize) -> Result<bool, Error> {
if terminal >= self.ter_num() {
return Err(Error::IndexOutOfBounds(terminal, self.ter_num()));
}
Ok(self
.firsts
.get(non_terminal)
.ok_or(Error::IndexOutOfBounds(non_terminal, self.firsts.len()))?
.contains(&Some(terminal)))
}
/// Return true if and only if the non-terminal is nullable.
///
/// # Error
///
/// If `non_terminal` is out of bounds, return the corresponding
/// error.
#[inline]
pub fn is_nullable(&self, non_terminal: usize) -> Result<bool, Error> {
Ok(self
.firsts
.get(non_terminal)
.ok_or(Error::IndexOutOfBounds(non_terminal, self.firsts.len()))?
.contains(&None))
}
// REVIEW: We shall use a label to query this information as well,
// probably.
/// Query the expansion information from the position `pos1` to
/// the position `pos2` .
#[inline]
pub fn query_expansion(
&self,
pos1: usize,
pos2: usize,
) -> Result<Option<&[(usize, usize)]>, Error> {
match self.state {
GrammarState::AfterLeftClosure => {}
_ => {
return Err(Error::WrongState(
self.state,
GrammarState::AfterLeftClosure,
));
}
}
Ok(self.expansion_map.get(&(pos1, pos2)).map(AsRef::as_ref))
}
/// Query the reduction information from the position `pos1` to
/// the position `pos2` .
#[inline]
pub fn query_reduction(&self, pos1: usize, pos2: usize) -> Result<Option<&[usize]>, Error> {
match self.state {
GrammarState::AfterLeftClosure => {}
_ => {
return Err(Error::WrongState(
self.state,
GrammarState::AfterLeftClosure,
));
}
}
Ok(self.reduction_map.get(&(pos1, pos2)).map(AsRef::as_ref))
}
/// Set the reduction information.
///
/// This is used to set the reduction information for the virtual
/// nodes that are added after the left closure has been computed.
#[inline]
pub fn set_reduction(&mut self, pos1: usize, pos2: usize, info: Vec<usize>) {
self.reduction_map.insert((pos1, pos2), info);
}
// REVIEW: Do we have a better way to record expansion and
// reduction information than to compute the transitive closure?
// REVIEW: We need a way to eliminate those left-linearly expanded
// edges whose labels had already been considered, and we need to
// preserve the transition of the `left_p` property at the same
// time.
//
// Maybe we could decide to delete those edges in the
// `remove_predicate`? But we cannot access the states of NFA in
// that predicate, in the current design, thus we need to refactor
// some codes, it seems: we need a way to "compactify" an NFA, by
// a key function, in such a way that if two entries have the same
// key (determined by the key function), then only one, determined
// by another function, remains in the NFA.
/// A transformer of labels to be fed into
/// [`closure`][nfa::default::nfa::DefaultNFA::closure], with the
/// predicate that returns true if and only if the label of the
/// first edge is either empty or a nullable non-terminal.
pub fn transform_label_null_epsilon(
&mut self,
two_edges: TwoEdges<LabelType<TNT>>,
) -> LabelType<TNT> {
#[cfg(debug_assertions)]
let (first_source, first_target, first_label) = two_edges.first_edge();
#[cfg(not(debug_assertions))]
let (first_source, _, first_label) = two_edges.first_edge();
let (second_source, second_target, second_label) = two_edges.second_edge();
#[cfg(debug_assertions)]
{
assert_eq!(first_target, second_source);
if let Some(tnt) = *first_label.get_value() {
assert!(matches!(tnt, TNT::Non(n) if matches!(self.is_nullable(n), Ok(true))));
}
}
// Compute if this is from left-linear expansion: it is so if
// and only if either one of the edges comes from left-linear
// expansion or we are moving across a non-terminal expansion,
// that is to say, the source of the second edge is the
// starting edge of a non-terminal.
let mut left_p = first_label.is_left_p() || second_label.is_left_p();
// if first_source == 0 && second_label.get_moved() == 15 {
// dbg!(second_source, second_target, first_label, second_label);
// dbg!(self.expansion_map.get(&(second_source, second_target)));
// dbg!(self.expansion_map.get(&(first_source, second_target)));
// }
// Record left-linear expansion information.
let original_expansion = self
.expansion_map
.get(&(second_source, second_target))
.cloned();
let second_nt_start = self.get_nt_start_in_nfa(second_source).is_some();
if !second_nt_start
&& !matches!(self.expansion_map.get(&(first_source, second_target)),
Some(expansion)
if expansion.len() >=
original_expansion
.as_ref()
.map(|vec| vec.len())
.unwrap_or(1))
{
if let Some(original_expansion) = &original_expansion {
self.expansion_map
.insert((first_source, second_target), original_expansion.clone());
} else {
let this_nt = self
.get_rule_num(second_source.div_euclid(2))
.unwrap_or_else(|_| self.non_num());
self.expansion_map.insert(
(first_source, second_target),
vec![(this_nt, second_label.get_moved())],
);
}
} else if second_nt_start {
left_p = true;
let original_moved = match self.expansion_map.get(&(first_source, second_source)) {
Some(old_expansion) if !old_expansion.is_empty() => old_expansion.last().unwrap().1,
_ => first_label.get_moved(),
};
let original_nt = self
.get_rule_num(first_source.div_euclid(2))
.unwrap_or_else(|_| self.non_num());
if !matches!(self.expansion_map.get(&(first_source, second_target)),
Some(expansion)
if expansion.len() >=
original_expansion
.as_ref()
.map(|vec| vec.len() + 1)
.unwrap_or(1))
{
self.expansion_map.insert(
(first_source, second_target),
if let Some(original_expansion) = original_expansion {
let mut result = original_expansion;
result.push((original_nt, original_moved));
result
} else {
vec![(original_nt, original_moved)]
},
);
}
}
// Record reduction information.
let original_reduction = self
.reduction_map
.get(&(second_source, second_target))
.cloned();
let second_nt_end = self.get_nt_end_in_nfa(second_source);
if second_nt_end.is_none()
&& !matches!(self.reduction_map.get(&(first_source, second_target)),
Some(reduction)
if reduction.len() >=
original_reduction
.as_ref()
.map(|vec| vec.len())
.unwrap_or(0))
{
if let Some(original_reduction) = &original_reduction {
self.reduction_map
.insert((first_source, second_target), original_reduction.clone());
}
}
if let Some(second_nt) = second_nt_end {
if !matches!(self.reduction_map.get(&(first_source, second_target)),
Some(reduction)
if reduction.len() >=
original_reduction
.as_ref()
.map(|vec| vec.len() + 1)
.unwrap_or(1))
{
self.reduction_map.insert(
(first_source, second_target),
if let Some(original_reduction) = original_reduction {
let mut result = original_reduction;
result.push(second_nt);
result
} else {
vec![second_nt]
},
);
}
}
NfaLabel::new(second_label.get_value(), second_label.get_moved(), left_p)
}
/// For a NON_TERMINAL, return an iterator that goes over the
/// nodes that are reachable from the non-terminal through an
/// empty transition of the nondeterministic finite automaton.
#[inline]
pub fn first_nodes_of(&self, non_terminal: usize) -> Result<std::slice::Iter<usize>, Error> {
match self.state {
GrammarState::Initial => {
return Err(Error::WrongState(
self.state,
GrammarState::AfterComputeFirst,
));
}
GrammarState::AfterComputeFirst
| GrammarState::AfterLeftClosure
| GrammarState::AfterNFA => {}
}
Ok(self
.first_nodes
.get(non_terminal)
.ok_or(Error::IndexOutOfBounds(non_terminal, self.non.len()))?
.iter())
}
/// Return a string describing a rule position.
pub fn rule_pos_to_string(&self, pos: usize) -> Result<String, Error> {
if pos == self.total() {
return Ok("End of rules".to_owned());
}
let rule_num = {
let mut result = None;
for (index, accumulator) in self.accumulators.iter().copied().skip(1).enumerate() {
if accumulator > pos {
result = Some(index);
break;
}
}
if let Some(n) = result {
n
} else {
return Err(Error::IndexOutOfBounds(pos, self.total()));
}
};
assert!(rule_num < self.rules.len());
let display_tnt = |tnt| self.name_of_tnt(tnt).unwrap_or_else(|e| format!("{e}"));
Ok(self
.rules
.get(rule_num)
.unwrap()
.regex
.to_string_with_dot(
display_tnt,
if rule_num == 0 {
pos
} else {
pos - self.accumulators.get(rule_num).copied().unwrap()
},
)
.unwrap())
}
}
pub mod first_set;
pub mod left_closure;
pub mod label;
pub use label::{GrammarLabel, GrammarLabelType};
impl Display for Grammar {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
assert_eq!(self.non.len(), self.rules.len());
for (nt, rule) in self.non.iter().zip(self.rules.iter()) {
write!(f, "{}: ", nt.name())?;
writeln!(
f,
"{}",
rule.regex.to_string_with(|tnt| format!(
" {} ",
self.name_of_tnt(tnt)
.unwrap_or_else(|_| format!("Unknown {tnt:?}"))
))?
)?;
}
Ok(())
}
}
pub mod abnf;
// A helper module that provides some grammars for testing.
#[cfg(feature = "test-helper")]
pub mod test_grammar_helper;
#[cfg(test)]
mod tests;
|