summaryrefslogtreecommitdiff
path: root/suffix tree/suffix tree test ground.txt
blob: e566bf7a67d48f206a953e0dcf4182b52b68215a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
suffix tree for "aabbccba$"
root
  a
    bbccba$
    abbccba$
    $
  b
    ccba$
    bccba$
    a$
  c
    ba$
    cba$
  $



suffix tree for "durand-bongo-play-previous-or-last"
root
  d
    -bongo-play-previous-or-last
    urand-bongo-play-previous-or-last
  u
    s-or-last
    rand-bongo-play-previous-or-last
  r
    evious-or-last
    and-bongo-play-previous-or-last
    -last
  a
    y-previous-or-last
    nd-bongo-play-previous-or-last
    st
  n
    go-play-previous-or-last
    d-bongo-play-previous-or-last
  -
    p
      revious-or-last
      lay-previous-or-last
    bongo-play-previous-or-last
    or-last
    last
  bongo-play-previous-or-last
  o
    -play-previous-or-last
    ngo-play-previous-or-last
    us-or-last
    r-last
  go-play-previous-or-last
  p
    revious-or-last
    lay-previous-or-last
  la
    st
    y-previous-or-last
  y-previous-or-last
  evious-or-last
  vious-or-last
  ious-or-last
  s
    t
    -or-last
  t



suffix tree for strings: aaaaa$
root
  a
    $
    a
      $
      a
        $
        a
          $
          a$
  $



suffix tree for strings: aaaaabbb$
root
  a
    bbb$
    a
      bbb$
      a
        bbb$
        a
          bbb$
          abbb$
  b
    $
    b
      $
      b$
  $



Generalized suffix tree for: abab, baba:
root
  a
    $ (1 : 3)
    b
      $ (0 : 2)
      a
        $ (1 : 1)
        b$ (0 : 0)
  b
    $ (0 : 3)
    a
      $ (1 : 2)
      b
        a$ (1 : 0)
        $ (0 : 1)
  $ (1 : 4)$ (0 : 4)



Generalized suffix tree for: abab, baba, cbabd:
root
  a
    $ (1 : 3)
    b
      $ (0 : 2)
      a
        $ (1 : 1)
        b$ (0 : 0)
      d$ (2 : 2)
  b
    $ (0 : 3)
    a
      $ (1 : 2)
      b
        a$ (1 : 0)
        $ (0 : 1)
        d$ (2 : 1)
    d$ (2 : 3)
  $ (2 : 5)$ (1 : 4)$ (0 : 4)
  cbabd$ (2 : 0)
  d$ (2 : 4)