blob: e566bf7a67d48f206a953e0dcf4182b52b68215a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
suffix tree for "aabbccba$"
root
a
bbccba$
abbccba$
$
b
ccba$
bccba$
a$
c
ba$
cba$
$
suffix tree for "durand-bongo-play-previous-or-last"
root
d
-bongo-play-previous-or-last
urand-bongo-play-previous-or-last
u
s-or-last
rand-bongo-play-previous-or-last
r
evious-or-last
and-bongo-play-previous-or-last
-last
a
y-previous-or-last
nd-bongo-play-previous-or-last
st
n
go-play-previous-or-last
d-bongo-play-previous-or-last
-
p
revious-or-last
lay-previous-or-last
bongo-play-previous-or-last
or-last
last
bongo-play-previous-or-last
o
-play-previous-or-last
ngo-play-previous-or-last
us-or-last
r-last
go-play-previous-or-last
p
revious-or-last
lay-previous-or-last
la
st
y-previous-or-last
y-previous-or-last
evious-or-last
vious-or-last
ious-or-last
s
t
-or-last
t
suffix tree for strings: aaaaa$
root
a
$
a
$
a
$
a
$
a$
$
suffix tree for strings: aaaaabbb$
root
a
bbb$
a
bbb$
a
bbb$
a
bbb$
abbb$
b
$
b
$
b$
$
Generalized suffix tree for: abab, baba:
root
a
$ (1 : 3)
b
$ (0 : 2)
a
$ (1 : 1)
b$ (0 : 0)
b
$ (0 : 3)
a
$ (1 : 2)
b
a$ (1 : 0)
$ (0 : 1)
$ (1 : 4)$ (0 : 4)
Generalized suffix tree for: abab, baba, cbabd:
root
a
$ (1 : 3)
b
$ (0 : 2)
a
$ (1 : 1)
b$ (0 : 0)
d$ (2 : 2)
b
$ (0 : 3)
a
$ (1 : 2)
b
a$ (1 : 0)
$ (0 : 1)
d$ (2 : 1)
d$ (2 : 3)
$ (2 : 5)$ (1 : 4)$ (0 : 4)
cbabd$ (2 : 0)
d$ (2 : 4)
|