summaryrefslogtreecommitdiff
path: root/nfa/src/lib.rs
blob: 31bd69a2dee62dccdb46e2d62010534cf4e432f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#![warn(missing_docs)]
//! This crate implements non-deterministic finite automata.
//!
//! By default this uses the graph from the crate [`graph`].  To use
//! another external graph, add a module in which the external graph
//! implements the Graph trait from the [`graph`] crate, and then use
//! that external graph type as [`Graph`][graph::Graph] here.

pub mod error;

extern crate graph;

use core::fmt::Display;

use std::ops::{Deref, DerefMut};

use graph::{Graph, GraphLabel, LabelExtGraph};

use error::Error;

pub use desrec::DesRec;

use default::regex::RegexType;

/// The expected behaviour of a regular language.
///
/// Nondeterministic finite automata are equivalent to regular
/// languages.  Since regular languages are easier to understand for a
/// human being, nondeterministic finite automata include the data for
/// the equivalent regular languages.
pub trait Regex<T: GraphLabel>: Graph + Display + Clone {
    /// Return the label of a vertex, or an error if the node is
    /// invalid.
    fn vertex_label(&self, node_id: usize) -> Result<T, Error>;

    #[inline]
    /// Return the root node of the regular language.
    ///
    /// Implementations can follow different conventions for the root
    /// node, and hence this function.
    ///
    /// If the regular language is empty, the implementation should
    /// return None.
    ///
    /// The default implementation uses the convention that the root
    /// node is always the first node.
    fn root(&self) -> Option<usize> {
        if self.is_empty() {
            None
        } else {
            Some(0)
        }
    }

    // TODO: Add functions that determine if certain "positions" in a
    // regular language satisfy some special properties, like at the
    // end of a Kleene star, or at the end of a regular language, et
    // cetera.  These might be needed later.
}

/// Since `Option<T>` does not inherit the `Display` from `T`, we wrap
/// it to provide an automatic implementation of `Display`.
#[derive(Debug, Clone, Copy, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct DOption<T>(Option<T>);

impl<T> Default for DOption<T> {
    fn default() -> Self {
        Self(None)
    }
}

impl<T> Deref for DOption<T> {
    type Target = Option<T>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T> DerefMut for DOption<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<T: Display> Display for DOption<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self.deref() {
            Some(value) => Display::fmt(value, f),
            None => write!(f, "ε"),
        }
    }
}

/// Substitute or Carry
///
/// This enumeration indicates whether a label from a regular
/// expression should be substituted by another regular expression, or
/// to be carried around in the resulting nondeterministic finite
/// automaton, in the process of the [`to_nfa`][Nfa::to_nfa] function.
///
/// # Transform labels
///
/// The label that is returned to be carried can be different from the
/// original label, as a way to transform the labels.
///
/// # Remark on the abbreviation
///
/// It happens "by chance" that this abbreviation coincides with the
/// abbreviation of "system on chip".  Since I know nothing about this
/// topic, this is just a meaningless pun.
#[derive(Debug, Copy, Clone)]
pub enum SoC<T> {
    /// To be substituted by another regular expression.
    Sub(usize),
    /// To carry around this label.
    Carry(T),
}

/// The expected behvaiour of a nondeterministic finite automaton.
///
/// Every NFA is a special labelled graph.
pub trait Nfa<T: GraphLabel>: LabelExtGraph<T> {
    // TODO: This trait should have a type for the labels.

    /// Remove all empty transitions from the nondeterministic finite
    /// automaton.
    fn remove_epsilon<F>(&mut self, f: F) -> Result<(), Error>
    where
        F: Fn(T) -> bool;

    /// Return a state-minimal NFA equivalent with the original one.
    ///
    /// This is not required.  It is just to allow me to experiment
    /// with NFA optimization algorithms.
    fn minimize(&self) -> Result<Box<Self>, Error> {
        Err(Error::UnsupportedOperation)
    }

    /// Check every node or edge by a given predicate.
    ///
    /// This should also verify that every node and edge has correct
    /// indices, so that we can safely use `unwrap` later.  A
    /// consequence is that, if one only wants to check the validity
    /// of nodes and edges, one can pass a function that always
    /// returns `true`.
    #[inline]
    fn labels_satisfy(&self, f: impl Fn(T) -> bool) -> Result<bool, Error> {
        let nodes_len = self.nodes_len();
        let mut result = true;

        for node in self.nodes() {
            for (label, children_iter) in self.labels_of(node)? {
                for child in children_iter {
                    if child >= nodes_len {
                        dbg!(node, label);
                        return Err(graph::error::Error::IndexOutOfBounds(child, nodes_len).into());
                    }
                }

                // NOTE: Avoid executing `f` if `result` is already
                // false.  But still proceed in verifying that nodes
                // and edges are correct: the correctness of nodes and
                // edges is more important than the function execution
                // results, as the former directly affects the safety
                // of many algorithms.
                if result && !f(*label) {
                    dbg!(node, label);
                    result = false;
                }
            }
        }

        Ok(result)
    }

    /// When we convert a regular expression to a nondeterministic
    /// finite automaton, the label should be optional, so we use a
    /// different type for the result type.
    type FromRegex<S: GraphLabel + Display + Default>;

    /// Build a nondeterministic finite automaton out of a set
    /// `regexps` of regular expressions.
    ///
    /// The `sub_pred` is a predicate function that returns an
    /// indication whether to carry the value around or to substitute
    /// by another regular language in the given set.
    ///
    /// The `default` parameter specifies the label of a default edge,
    /// that goes from a node to another, both of which are not
    /// associated with the given regular languages.
    ///
    /// This function should perform Thompson's construction,
    /// basically.
    fn to_nfa(
        regexps: &[impl Regex<RegexType<T>>],
        // TODO: The transformation should produce more information.
        sub_pred: impl Fn(T) -> Result<SoC<T>, Error>,
        default: Option<T>,
    ) -> Result<Self::FromRegex<DOption<T>>, Error>;

    /// Remove all dead states from the nondeterministic finite
    /// automaton.
    ///
    /// A state is dead if there are no edges going to the state, and
    /// if it is not reserved.
    ///
    /// # Note
    ///
    /// Actually an implementation is allowed to just remove all edges
    /// out of the dead nodes.  Then these nodes are considered gone
    /// from the graph, and we don't need to re-index the existing
    /// edges.  We can call this "a poor man's removal of nodes".
    fn remove_dead(&mut self, reserve: impl Fn(usize) -> bool) -> Result<(), Error>;

    /// For each edge from A to B whose edge is considered nullable by
    /// a function `f`, and for every edge from B to C, add an edge
    /// from A to C.
    ///
    /// This is needed specifically by the algorithm to produce a set
    /// of atomic languages that represent "null-closed" derived
    /// languages.
    fn nulling(&mut self, f: impl Fn(T) -> bool) -> Result<(), Error>;
}

pub mod default;
pub mod desrec;