1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
|
//! This file provides a default implementation of Regex.
use graph::{error::Error as GError, ALGraph, ExtGraph, Graph, GraphLabel};
use crate::{desrec::DesRec, error::Error, Regex};
use receme::{algebra::Algebra, catana::Cata};
use std::{
collections::HashMap,
fmt::{Debug, Display, Write},
marker::PhantomData,
};
/// The type of a node in a regular expression.
///
/// # Example
///
/// If a node has type "Kleene", this means it represents a star
/// construct in a regular expression, and its children are the
/// contents of the star.
///
/// # Note
///
/// There is no "concatenation" node type. A concatenation of two
/// nodes is represented as the two nodes being successive children in
/// their common parent node.
///
/// This is possible because a regular expression has a root node.
/// For the sake of convenience, the root node has type "Or".
#[derive(Debug, Hash, Default, Eq, PartialEq, Clone, Copy, Ord, PartialOrd)]
pub enum RegexType<T: GraphLabel> {
/// A star node is a node with an arbitrary number of repetitions.
Kleene,
/// A plus node is a node with at least one repetition: a+ equals
/// aa*
Plus,
/// An optional node
Optional,
/// An or node means an alternation of its children.
Or,
/// A paren node represents a parenthesis.
Paren,
/// An empty node
#[default]
Empty,
/// A literal node
Lit(T),
}
impl<T: GraphLabel> Display for RegexType<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
RegexType::Kleene => write!(f, "*"),
RegexType::Plus => write!(f, "+"),
RegexType::Optional => write!(f, "?"),
RegexType::Or => write!(f, "|"),
RegexType::Paren => write!(f, "()"),
RegexType::Empty => write!(f, "empty"),
RegexType::Lit(value) => write!(f, "{value}"),
}
}
}
/// A default implementation of regular expressions.
#[derive(Debug, Clone)]
pub struct DefaultRegex<T: GraphLabel + Display> {
/// The underlying graph is stored using adjacency lists.
graph: ALGraph,
/// The types of the underlying nodes.
types: Vec<RegexType<T>>,
/// The root of the graph.
///
/// If it is None, it indicates the regular expression is empty.
root: Option<usize>,
}
impl<T: GraphLabel + Display> Default for DefaultRegex<T> {
fn default() -> Self {
Self {
graph: Default::default(),
types: Default::default(),
root: Default::default(),
}
}
}
impl<T: GraphLabel> DefaultRegex<T> {
/// Set the root of the regular expression.
#[inline]
pub fn set_root(&mut self, root: Option<usize>) {
self.root = root;
}
/// Construct a regular expression from a raw adjacency list graph
/// and an array of labels.
///
/// # Error
///
/// If the graph contains cycles, this function will return an
/// error. This check is added to make sure that the regular
/// expression contains no cycles, otherwise operations with
/// regular expressions might enter infinite loops later.
pub fn new(graph: ALGraph, types: Vec<RegexType<T>>) -> Result<Self, Error> {
if graph.contains_cycles()? {
Err(Error::Cycle)
} else {
Ok(Self {
graph,
types,
root: Some(0),
})
}
}
/// Return the number of elements in this regular expression,
/// counting nodes.
pub fn len(&self) -> usize {
self.types.len()
}
/// Return true if and only if this regular expression has no
/// nodes.
pub fn is_empty(&self) -> bool {
self.types.is_empty()
}
/// Add a node as the child of an existing node or as a root.
pub fn add_node(
&mut self,
label: RegexType<T>,
parent: Option<usize>,
) -> Result<(), ParseError> {
self.graph.extend(parent.iter().copied())?;
self.types.push(label);
Ok(())
}
/// Return the internal graph.
///
/// Normally this should not be used.
pub fn internal_graph(&self) -> ALGraph {
self.graph.clone()
}
/// Return the internal types array.
///
/// Normally this should not be used.
pub fn internal_types(&self) -> Vec<RegexType<T>> {
self.types.clone()
}
/// Return the array of parents.
///
/// The element at index N of the returned array is the parent of
/// that N-th element. If an element has no parents, a `None` is
/// placed at its place.
///
/// # Error
///
/// If some edge points to an invalid node, an erro will be
/// returned.
///
/// Also, if the graph contains cycles, an error is also returned.
pub fn parents_array(&self) -> Result<Vec<Option<(usize, usize)>>, Error> {
if self.graph.contains_cycles().map_err(|e| match e {
GError::IndexOutOfBounds(n, _) => Error::UnknownNode(n),
_ => unreachable!(),
})? {
return Err(Error::Cycle);
}
let len = self.len();
let mut result: Vec<_> = std::iter::repeat_with(|| None).take(len).collect();
for source in self.graph.nodes() {
for (index, target) in self
.graph
.children_of(source)
.map_err(|_| Error::UnknownNode(source))?
.enumerate()
{
result
.get_mut(target)
.ok_or(Error::UnknownNode(target))?
.replace((source, index));
}
}
Ok(result)
}
}
// REVIEW: This may not be needed.
impl<S: GraphLabel, T, A> Cata<T, Vec<T>, A> for &DefaultRegex<S>
where
A: Algebra<T, Vec<T>>,
{
fn cata(self, mut alg: A) -> T {
let mut results: Vec<Option<T>> = std::iter::repeat_with(Default::default)
.take(self.len())
.collect();
for index in 0..=self.len() {
let algebra_result = {
let results_of_children: Vec<T> = self
.graph
.children_of(index)
.unwrap()
.map(|child_index| std::mem::replace(&mut results[child_index], None).unwrap())
.collect();
alg(results_of_children)
};
// Artificially use this value to satisfy the compiler.
let _ = std::mem::replace(&mut results[index], Some(algebra_result));
}
std::mem::replace(&mut results[0], None).unwrap()
}
}
impl<T: GraphLabel> DefaultRegex<T> {
/// Use a function to format the labels of the regular expressions
/// and format the entire regular expression with this aid.
pub fn to_string_with<F>(&self, mut f: F) -> Result<String, std::fmt::Error>
where
F: FnMut(T) -> String,
{
#[derive(Copy, Clone)]
enum StackElement {
Seen(usize),
Unseen(usize),
}
impl StackElement {
fn index(&self) -> usize {
match self {
Seen(index) => *index,
Unseen(index) => *index,
}
}
fn is_seen(self) -> bool {
matches!(self, Seen(_))
}
}
use StackElement::{Seen, Unseen};
let mut result = String::new();
let mut stack: Vec<StackElement> = Vec::new();
let mut types = self.types.clone();
types.push(RegexType::Paren);
stack.push(Unseen(0));
while let Some(top) = stack.pop() {
let node_type = types.get(top.index()).unwrap();
match node_type {
RegexType::Kleene => {
if !top.is_seen() {
stack.push(Seen(top.index()));
if self.degree(top.index()).unwrap() > 1 {
write!(result, "(")?;
stack.push(Unseen(types.len() - 1));
}
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
} else {
write!(result, "*")?;
}
}
RegexType::Plus => {
if !top.is_seen() {
stack.push(Seen(top.index()));
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
} else {
write!(result, "+")?;
}
}
RegexType::Optional => {
if !top.is_seen() {
stack.push(Seen(top.index()));
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
} else {
write!(result, "?")?;
}
}
RegexType::Or => {
if !top.is_seen() {
write!(result, "(")?;
let len = self.len();
stack.push(Unseen(types.len() - 1));
for (child_index, child) in self
.graph
.children_of(top.index())
.unwrap()
.enumerate()
.rev()
{
if child_index != len - 1 && child_index != 0 {
stack.push(Unseen(child));
stack.push(Seen(top.index()));
} else {
stack.push(Unseen(child));
}
}
} else {
write!(result, "|")?;
}
}
RegexType::Paren => {
write!(result, ")")?;
}
RegexType::Empty => {
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
if self.graph.is_empty_node(top.index()).unwrap() {
write!(result, "ε")?;
}
}
RegexType::Lit(label) => write!(result, "{}", f(*label))?,
}
}
Ok(result)
}
/// Use a function to format the labels of the regular expressions
/// and format the entire regular expression with this aid, with a
/// dot at a specified position.
pub fn to_string_with_dot<F>(&self, mut f: F, dot_pos: usize) -> Result<String, std::fmt::Error>
where
F: FnMut(T) -> String,
{
#[derive(Copy, Clone)]
enum StackElement {
Seen(usize),
Unseen(usize),
}
impl StackElement {
fn index(&self) -> usize {
match self {
Seen(index) => *index,
Unseen(index) => *index,
}
}
fn is_seen(self) -> bool {
matches!(self, Seen(_))
}
}
use StackElement::{Seen, Unseen};
let mut result = String::new();
let mut stack: Vec<StackElement> = Vec::new();
let mut types = self.types.clone();
types.push(RegexType::Paren);
stack.push(Unseen(0));
while let Some(top) = stack.pop() {
let node_type = types.get(top.index()).unwrap();
match node_type {
RegexType::Kleene => {
if !top.is_seen() {
stack.push(Seen(top.index()));
if self.degree(top.index()).unwrap() > 1 {
write!(result, "(")?;
stack.push(Unseen(types.len() - 1));
}
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
} else {
write!(result, "*")?;
}
}
RegexType::Plus => {
if !top.is_seen() {
stack.push(Seen(top.index()));
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
} else {
write!(result, "+")?;
}
}
RegexType::Optional => {
if !top.is_seen() {
stack.push(Seen(top.index()));
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
} else {
write!(result, "?")?;
}
}
RegexType::Or => {
if !top.is_seen() {
write!(result, "(")?;
let len = self.len();
stack.push(Unseen(types.len() - 1));
for (child_index, child) in self
.graph
.children_of(top.index())
.unwrap()
.enumerate()
.rev()
{
if child_index != len - 1 && child_index != 0 {
stack.push(Unseen(child));
stack.push(Seen(top.index()));
} else {
stack.push(Unseen(child));
}
}
} else {
write!(result, "|")?;
}
}
RegexType::Paren => {
write!(result, ")")?;
}
RegexType::Empty => {
stack.extend(
self.graph
.children_of(top.index())
.unwrap()
.map(Unseen)
.rev(),
);
if self.graph.is_empty_node(top.index()).unwrap() {
write!(result, "ε")?;
}
}
RegexType::Lit(label) => write!(result, "{}", f(*label))?,
}
if top.index() == dot_pos {
write!(result, " · ")?;
}
}
Ok(result)
}
}
impl<T: GraphLabel + Display + Debug> Display for DefaultRegex<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_string_with(|t| format!("{t}"))?)
}
}
impl<T: GraphLabel + Display> Graph for DefaultRegex<T> {
type Iter<'a> = <ALGraph as Graph>::Iter<'a>
where
Self: 'a;
#[inline]
fn is_empty(&self) -> bool {
self.graph.is_empty()
}
#[inline]
fn nodes_len(&self) -> usize {
self.graph.nodes_len()
}
#[inline]
fn children_of(&self, node_id: usize) -> Result<Self::Iter<'_>, GError> {
self.graph.children_of(node_id)
}
#[inline]
fn degree(&self, node_id: usize) -> Result<usize, GError> {
self.graph.degree(node_id)
}
#[inline]
fn is_empty_node(&self, node_id: usize) -> Result<bool, GError> {
self.graph.is_empty_node(node_id)
}
#[inline]
fn has_edge(&self, source: usize, target: usize) -> Result<bool, GError> {
self.graph.has_edge(source, target)
}
#[inline]
fn replace_by_builder(&mut self, _builder: impl graph::Builder<Result = Self>) {
unimplemented!()
}
}
impl<T: GraphLabel + Display + Debug> Regex<RegexType<T>> for DefaultRegex<T> {
/// Return the root of the regular expression.
#[inline]
fn root(&self) -> Option<usize> {
self.root
}
#[inline]
fn vertex_label(&self, node_id: usize) -> Result<RegexType<T>, Error> {
self.types
.get(node_id)
.copied()
.ok_or(Error::UnknownNode(node_id))
}
}
/// An error type for holding parsing errors.
#[derive(Debug, Copy, Clone)]
pub enum ParseError {
/// A cycle is encountered.
Cycle,
/// Encounter an invalid state.
Invalid,
/// An error from graph operations.
Graph(GError),
/// Encounter an empty stack.
EmptyStack,
/// Encounter a non-single stack at the end.
NonSingleStack,
/// Encounter a stack whose element is out of bounds.
///
/// The first component is the stack element, while the second the
/// bound.
InvalidStack(usize, usize),
/// Encounter a repetition construct without a preceding element.
InvalidRepetition(usize),
/// Invalid character
InvalidCharacter(char),
}
impl Display for ParseError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{self:?}")
}
}
impl std::error::Error for ParseError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
if let ParseError::Graph(gerr) = self {
Some(gerr)
} else {
None
}
}
}
impl From<GError> for ParseError {
fn from(ge: GError) -> Self {
Self::Graph(ge)
}
}
/// The direction of parsing.
///
/// This means whether we want to stay at the same level of
/// parent-child hierarchy, or to become the child, or to climb back
/// to the last parent.
#[derive(Debug, Copy, Clone, Default)]
pub enum ParseDirection {
/// Climb back to the last parent.
Up,
/// Stay at the same level in the hierarchy.
#[default]
Right,
/// Become the child.
Down,
}
impl Display for ParseDirection {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let direction = match self {
ParseDirection::Up => "↑",
ParseDirection::Right => "→",
ParseDirection::Down => "↓",
};
write!(f, "{direction}")
}
}
/// A default recursive descent parser for regular expressions of
/// terminals or non-terminals.
#[derive(Debug, Clone)]
pub struct DefaultRegParser<T: GraphLabel + Display> {
ter_map: HashMap<String, usize>,
non_map: HashMap<String, usize>,
_phantom: PhantomData<T>,
}
impl<T: GraphLabel + Display> DefaultRegParser<T> {
/// Query if a terminal or a non-terminal is already found.
///
/// If found, return the associated index of the terminal or
/// non-terminal.
pub fn query(&self, tnt: &str, terminal_p: bool) -> Option<usize> {
if terminal_p {
self.ter_map.get(tnt).copied()
} else {
self.non_map.get(tnt).copied()
}
}
/// Add a terminal or a non-terminal.
pub fn add_tnt(&mut self, tnt: &str, terminal_p: bool) {
if terminal_p {
let ter_len = self.ter_map.len();
self.ter_map.entry(tnt.to_owned()).or_insert(ter_len);
} else {
let non_len = self.non_map.len();
self.non_map.entry(tnt.to_owned()).or_insert(non_len);
}
}
}
impl<T: GraphLabel + Display> Default for DefaultRegParser<T> {
fn default() -> Self {
Self {
ter_map: Default::default(),
non_map: Default::default(),
_phantom: PhantomData,
}
}
}
impl<T: GraphLabel + Display + Debug> DesRec for DefaultRegParser<T> {
type Label = RegexType<T>;
type Regex = DefaultRegex<T>;
type Error = ParseError;
type Inter = ParseDirection;
type Scanner<'a, 'b> = Box<
dyn FnMut(
&'b Self,
&'a str,
) -> Result<Option<(usize, Self::Label, Self::Inter)>, Self::Error>,
> where RegexType<T>:'b;
fn parse<'a, 'b>(
&'b self,
mut input: &'a str,
mut scanner: Self::Scanner<'a, 'b>,
post_p: bool,
) -> Result<Option<(DefaultRegex<T>, &'a str)>, Self::Error>
where
Self::Label: 'b,
{
use ParseDirection::*;
use RegexType::*;
let mut intermediate_stack: Vec<(RegexType<T>, ParseDirection)> =
Vec::with_capacity(input.len());
// Classifies the input into a sequence of tokens with
// directions.
while !input.is_empty() {
if let Some((len, label, direction)) = scanner(self, input)? {
if len == 0 {
break;
}
input = &input[len..];
intermediate_stack.push((label, direction));
// If we encounter an opening parenthesis, we add
// another auxiliary instruction.
if matches!((label, direction), (Or, Down)) {
intermediate_stack.push((Empty, Down));
}
} else {
break;
}
}
let inter_len = intermediate_stack.len();
let mut parents_stack: Vec<usize> = Vec::with_capacity(inter_len + 2);
parents_stack.push(0);
parents_stack.push(1);
let mut list_of_children: Vec<Vec<usize>> = std::iter::repeat_with(Vec::new)
.take(inter_len + 2)
.collect();
list_of_children[0].push(1);
let mut types: Vec<RegexType<T>> = vec![Or, Empty];
types.extend(intermediate_stack.iter().map(|(label, _direction)| *label));
// Converts the sequence of tokens and directions into a
// regular expression.
for (index, (label, direction)) in intermediate_stack.iter().copied().enumerate() {
let mut parent: usize;
let mut parent_children: &mut Vec<usize>;
if let Some(parent_stack_parent) = parents_stack.last().copied() {
parent = parent_stack_parent;
match list_of_children.get_mut(parent) {
Some(stack_parent_children) => {
parent_children = stack_parent_children;
match (label, direction) {
(Paren, Up) => {
// a closing parenthesis does not need
// to be counted as a child
parents_stack.pop();
// a closing parenthesis jumps out of
// two levels at once
parents_stack.pop();
}
(Empty, Up) => {
// an upwards pipe
// first add the current node to the parent of the parent
parents_stack.pop();
if let Some(parent_stack_parent) = parents_stack.last().copied() {
parent = parent_stack_parent;
if let Some(stack_parent_children) =
list_of_children.get_mut(parent)
{
parent_children = stack_parent_children;
parent_children.push(index + 2);
} else {
return Err(ParseError::InvalidStack(
parent,
inter_len + 2,
));
}
} else {
return Err(ParseError::EmptyStack);
}
// then make the current node the new parent
parents_stack.push(index + 2);
}
(_, Up) => {
parents_stack.pop();
parent_children.push(index + 2);
}
(_, Right) => {
parent_children.push(index + 2);
}
(_, Down) => {
parents_stack.push(index + 2);
parent_children.push(index + 2);
}
}
}
None => return Err(ParseError::InvalidStack(parent, inter_len)),
}
} else {
// There are unbalanced closing parentheses.
return Err(ParseError::EmptyStack);
}
// A special handling of repetition constructs as postfix
// operators: it swaps with the preceding element.
if post_p {
match label {
Kleene | Plus | Optional => {
// remove the current node from the parent
parent_children.pop();
if let Some(preceding) = parent_children.last().copied() {
list_of_children.swap(preceding, index + 2);
types.swap(preceding, index + 2);
match list_of_children.get_mut(preceding) {
Some(preceding_children) => {
preceding_children.push(index + 2);
}
None => {
return Err(ParseError::InvalidStack(preceding, inter_len + 2))
}
}
} else {
return Err(ParseError::InvalidRepetition(index));
}
}
_ => {}
}
}
}
// There are unbalanced opening parentheses.
if parents_stack.len() != 2 {
return Err(ParseError::NonSingleStack);
}
let graph = list_of_children.into();
// Check there are no cycles
let result = DefaultRegex::new(graph, types).map_err(|e| match e {
Error::Graph(ge) => ParseError::Graph(ge),
Error::Cycle => ParseError::Cycle,
_ => unreachable!(),
})?;
Ok(Some((result, input)))
}
}
#[cfg(test)]
mod test_des_rec {
use super::*;
use crate::desrec::DesRec;
#[allow(dead_code, unused)]
fn test_scanner<'a, 'b, T>(
parser: &'b DefaultRegParser<T>,
input: &'a str,
) -> Result<Option<(usize, RegexType<char>, ParseDirection)>, ParseError>
where
T: GraphLabel + Display + Debug,
T: 'b,
{
use ParseDirection::*;
use RegexType::*;
if let Some(first) = input.chars().next() {
match first {
'*' => Ok(Some((1, Kleene, Right))),
'+' => Ok(Some((1, Plus, Right))),
'?' => Ok(Some((1, Optional, Right))),
'|' => Ok(Some((1, Empty, Up))),
'(' => Ok(Some((1, Or, Down))),
')' => Ok(Some((1, Paren, Up))),
' '..='~' => Ok(Some((1, Lit(first), Right))),
_ => Err(ParseError::InvalidCharacter(first)),
}
} else {
Ok(None)
}
}
#[test]
fn test_des_rec() -> Result<(), Box<dyn std::error::Error>> {
let input_string = "(ade)*b?c+|(d*| +)?".to_owned();
let parser: DefaultRegParser<char> = Default::default();
if let Some((regex, remain)) =
DefaultRegParser::<char>::parse(&parser, &input_string, Box::new(test_scanner), true)?
{
println!("regex = {regex}");
println!("remain = {remain}");
println!("regex length = {}", regex.len());
let parents = regex.parents_array()?;
println!("parents = {parents:?}");
Ok(())
} else {
unreachable!()
}
}
#[test]
fn test_display() -> Result<(), Box<dyn std::error::Error>> {
use graph::builder::Builder;
use RegexType::*;
let mut builder = graph::adlist::ALGBuilder::default();
let mut types: Vec<RegexType<usize>> = Vec::with_capacity(4);
types.push(Kleene);
builder.add_vertex();
types.push(Lit(0));
builder.add_vertex();
builder.add_edge(0, 1, ())?;
types.push(Lit(1));
builder.add_vertex();
builder.add_edge(0, 2, ())?;
types.push(Lit(2));
builder.add_vertex();
builder.add_edge(0, 3, ())?;
let graph = builder.build();
let regex = DefaultRegex::new(graph, types)?;
println!("regex = {regex}");
Ok(())
}
}
|