1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
#![warn(missing_docs)]
//! This file implements a labelled graph. See the
//! [trait][super::LabelGraph] for details.
//!
//! Since the method
//! [`find_children_with_label`][super::LabelGraph::find_children_with_label]
//! needs to be implemented efficiently, we store the mappings between
//! labels and edges in both directions.
#[allow(unused_imports)]
use super::{Graph, GraphLabel, LabelExtGraph, LabelGraph};
#[allow(unused_imports)]
use crate::error::Error;
// We use BTreeMap and BTreeSet here as we need to exclude duplicate
// edge sets, while an ordinary hashmap and hashset do not allow
// hashing.
use std::collections::{
btree_map::{Iter as MapIter, Keys},
btree_set::Iter,
BTreeMap as Map, BTreeSet as Set, HashMap as HMap,
};
#[derive(Debug, Clone, Default)]
struct DLNode<T: GraphLabel> {
by_target: Map<usize, Set<T>>,
by_label: Map<T, Set<usize>>,
flat: Vec<(T, usize)>,
}
impl<T: GraphLabel> DLNode<T> {
fn new(
by_target: Map<usize, Set<T>>,
by_label: Map<T, Set<usize>>,
flat: Vec<(T, usize)>,
) -> Self {
Self {
by_target,
by_label,
flat,
}
}
}
/// Mapping a set of edges to an index of node.
type EdgeMap<T> = HMap<Set<(T, usize)>, usize>;
/// Double direction Labelled Graph.
///
/// Each node is supposed to have a unique edge set. Constructing
/// methods such as from the trait
/// [`LabelExtGraph`][super::LabelExtGraph] already handles the
/// elimination of duplication.
#[derive(Debug, Clone)]
pub struct DLGraph<T: GraphLabel> {
nodes: Vec<DLNode<T>>,
edges_table: EdgeMap<T>,
}
impl<T: GraphLabel> DLGraph<T> {
#[inline]
/// Return an empty graph.
pub fn new() -> Self {
Self {
nodes: Vec::new(),
edges_table: HMap::default(),
}
}
}
impl<T: GraphLabel> Default for DLGraph<T> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<T: GraphLabel> Graph for DLGraph<T> {
// Not using a boxed pointer is supposed to save some allocations.
type Iter<'a> = std::iter::Copied<Keys<'a, usize, Set<T>>> where T: 'a;
#[inline]
fn is_empty(&self) -> bool {
self.nodes.is_empty()
}
#[inline]
fn nodes_len(&self) -> usize {
self.nodes.len()
}
#[inline]
fn children_of(&self, node_id: usize) -> Result<Self::Iter<'_>, Error> {
match self.nodes.get(node_id) {
Some(node) => Ok(node.by_target.keys().copied()),
None => Err(Error::IndexOutOfBounds(node_id, self.nodes.len())),
}
}
#[inline]
/// Return the number of "children" of a node, or an error if the
/// node is not a member of the graph.
///
/// This counts edges with different labels as different edges.
fn degree(&self, node_id: usize) -> Result<usize, Error> {
self.nodes
.get(node_id)
.ok_or(Error::IndexOutOfBounds(node_id, self.nodes.len()))
.map(|node| node.flat.len())
}
#[inline]
fn is_empty_node(&self, node_id: usize) -> Result<bool, Error> {
self.nodes
.get(node_id)
.ok_or(Error::IndexOutOfBounds(node_id, self.nodes.len()))
.map(|node| node.flat.is_empty())
}
fn has_edge(&self, source: usize, target: usize) -> Result<bool, Error> {
match self.nodes.get(source) {
Some(source_node) => {
if self.nodes.get(target).is_none() {
return Err(Error::IndexOutOfBounds(target, self.nodes.len()));
}
Ok(source_node.by_target.contains_key(&target))
}
None => Err(Error::IndexOutOfBounds(source, self.nodes.len())),
}
}
}
/// A delegation of iterators.
///
/// This is used to avoid a boxed pointer to an iterator.
#[derive(Default, Debug)]
pub struct LabelIndexIter<'a> {
iter: Option<std::iter::Copied<Iter<'a, usize>>>,
}
impl<'a> Iterator for LabelIndexIter<'a> {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.iter.as_mut().and_then(|iterator| iterator.next())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.iter {
Some(iter) => iter.size_hint(),
None => (0, Some(0)),
}
}
}
impl<'a> ExactSizeIterator for LabelIndexIter<'a> {
#[inline]
fn len(&self) -> usize {
match &self.iter {
Some(iter) => iter.len(),
None => 0,
}
}
}
impl<'a> LabelIndexIter<'a> {
fn new(iter: std::iter::Copied<Iter<'a, usize>>) -> Self {
let iter = Some(iter);
Self { iter }
}
}
// A convenience method
impl<'a> From<&'a Set<usize>> for LabelIndexIter<'a> {
fn from(set: &'a Set<usize>) -> Self {
Self::new(set.iter().copied())
}
}
#[derive(Debug)]
/// A delegation of iterators.
///
/// This is used to avoid a boxed pointer to an iterator.
pub struct LabelIter<'a, T> {
iter: MapIter<'a, T, Set<usize>>,
}
impl<'a, T> ExactSizeIterator for LabelIter<'a, T> {
#[inline]
fn len(&self) -> usize {
self.iter.len()
}
}
impl<'a, T> LabelIter<'a, T> {
fn new(iter: MapIter<'a, T, Set<usize>>) -> Self {
Self { iter }
}
}
impl<'a, T> Iterator for LabelIter<'a, T> {
type Item = (&'a T, LabelIndexIter<'a>);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(label, set)| (label, set.into()))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<T: GraphLabel> LabelGraph<T> for DLGraph<T> {
type Iter<'a> = LabelIndexIter<'a> where T: 'a;
type LabelIter<'a> = LabelIter<'a,T> where T: 'a;
fn edge_label(&self, source: usize, target: usize) -> Result<Vec<T>, Error> {
if self.has_edge(source, target)? {
Ok(self
.nodes
.get(source)
.unwrap()
.by_target
.get(&target)
.unwrap()
.iter()
.copied()
.collect())
} else {
Ok(Vec::new())
}
}
fn find_children_with_label(
&self,
node_id: usize,
label: &T,
) -> Result<<Self as LabelGraph<T>>::Iter<'_>, Error> {
match self
.nodes
.get(node_id)
.ok_or(Error::IndexOutOfBounds(node_id, self.nodes.len()))?
.by_label
.get(label)
{
Some(set) => Ok(set.into()),
None => Ok(Default::default()),
}
}
#[inline]
fn labels_of(&self, node_id: usize) -> Result<Self::LabelIter<'_>, Error> {
match self.nodes.get(node_id) {
Some(node) => Ok(Self::LabelIter::new(node.by_label.iter())),
None => Err(Error::IndexOutOfBounds(node_id, self.nodes.len())),
}
}
}
impl<T: GraphLabel> LabelExtGraph<T> for DLGraph<T> {
fn extend(&mut self, edges: impl IntoIterator<Item = (T, usize)>) -> Result<usize, Error> {
let mut by_target: Map<usize, Set<T>> = Map::default();
let mut by_label: Map<T, Set<usize>> = Map::default();
let mut flat = Vec::new();
let mut edges_set = Set::new();
for (label, to) in edges {
if !self.has_node(to) {
return Err(Error::IndexOutOfBounds(to, self.nodes.len()));
}
edges_set.insert((label, to));
if let Some(set) = by_target.get(&to) {
if !set.contains(&label) {
flat.push((label, to));
by_target.get_mut(&to).unwrap().insert(label);
by_label
.entry(label)
.or_insert_with(Default::default)
.insert(to);
}
} else {
flat.push((label, to));
by_target
.entry(to)
.or_insert_with(Default::default)
.insert(label);
by_label
.entry(label)
.or_insert_with(Default::default)
.insert(to);
}
}
match self.edges_table.get(&edges_set) {
Some(old_index) => Ok(*old_index),
None => {
let new_node = DLNode::new(by_target, by_label, flat);
let new_index = self.nodes_len();
self.edges_table.insert(edges_set, new_index);
self.nodes.push(new_node);
Ok(new_index)
}
}
}
}
#[cfg(test)]
mod label_test {
use super::*;
macro_rules! set {
() => { Set::<usize>::default() };
($($num:literal),*) => {
{
let mut set: Set<usize> = Set::default();
$(set.insert($num);)*
set
}
};
}
macro_rules! map {
() => { Map::<usize, Set<usize>>::default() };
($(($key:literal, $value:expr)),*) => {
{
let mut map: Map<usize, Set<usize>> = Map::default();
$(map.insert($key, $value);)*
map
}
};
}
#[test]
fn test_graph_apis() -> Result<(), Error> {
let mut graph: DLGraph<usize> = Default::default();
// testing empty graph
assert!(graph.is_empty());
// testing adding an empty node
assert_eq!(graph.extend(std::iter::empty())?, 0);
// testing nodes_len
assert_eq!(graph.nodes_len(), 1);
// testing extension
assert_eq!(graph.extend([(0, 0)].iter().copied())?, 1);
assert_eq!(graph.extend([(1, 0), (1, 1)].iter().copied())?, 2);
assert_eq!(graph.extend([(3, 0), (3, 2)].iter().copied())?, 3);
assert_eq!(graph.extend([(1, 1), (1, 2)].iter().copied())?, 4);
assert_eq!(graph.extend([(2, 1), (3, 2), (2, 3)].iter().copied())?, 5);
// testing adding a duplicated edge set
assert_eq!(graph.extend([(2, 1), (2, 3), (3, 2)].iter().copied())?, 5);
assert_eq!(graph.extend([(3, 2), (3, 0)].iter().copied())?, 3);
let graph = graph;
// ensuring the correct length
assert_eq!(graph.nodes_len(), 6);
// testing children_of
assert_eq!(graph.children_of(5)?.collect::<Set<_>>(), set!(1, 3, 2));
// testing find_children_with_label
assert_eq!(
graph.find_children_with_label(5, &2)?.collect::<Set<_>>(),
set!(1, 3)
);
// testing edge_label
assert_eq!(
graph.edge_label(5, 2)?.into_iter().collect::<Set<_>>(),
set!(3)
);
assert!(matches!(
graph.edge_label(6, 2),
Err(Error::IndexOutOfBounds(6, 6))
));
// testing degree
assert_eq!(graph.degree(4)?, 2);
// testing is_empty_node
assert!(graph.is_empty_node(0)?);
assert!(!graph.is_empty_node(1)?);
// testing has_edge
assert!(graph.has_edge(3, 2)?);
assert!(!graph.has_edge(3, 1)?);
assert!(matches!(
graph.has_edge(3, 6),
Err(Error::IndexOutOfBounds(6, 6))
));
// testing labels_of
let mut label_map: Map<usize, Set<usize>> = Map::default();
for (label, children) in graph.labels_of(5)? {
label_map.insert(*label, children.collect());
}
let compare_map = map!((2, set!(1, 3)), (3, set!(2)));
assert_eq!(label_map, compare_map);
assert!(matches!(
graph.labels_of(6),
Err(Error::IndexOutOfBounds(6, 6))
));
Ok(())
}
}
|