1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
#![warn(missing_docs)]
//! This file implements a data type that implements the trait
//! [`Graph`][super::Graph]. This data type represents graphs using
//! adjacency sets internally.
//!
//! I need this because the derivatives languages should not allow
//! duplications of languages, so it is more convenient if the
//! underlying graph type **cannot** represent duplicate edges.
use super::{ExtGraph, Graph};
use crate::error::Error;
// If one wants to use another implementation for a set, import that
// as Set, and nothing else needs to be changed, ideally.
use std::collections::{hash_set::Iter, HashSet as Set};
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
struct ASEdge {
to: usize,
}
impl ASEdge {
fn new(to: usize) -> Self {
Self { to }
}
}
#[derive(Debug, Clone, Default)]
struct ASNode {
children: Set<ASEdge>,
}
impl ASNode {
fn new(children: Set<ASEdge>) -> Self {
Self { children }
}
}
/// The graph implemented using adjacency sets.
#[derive(Debug, Clone, Default)]
pub struct ASGraph {
nodes: Vec<ASNode>,
}
/// A delegation of iterators.
///
/// This is here to avoid using a boxed pointer, in order to save some
/// allocations.
pub struct ASIter<'a> {
iter: Iter<'a, ASEdge>,
}
impl<'a> Iterator for ASIter<'a> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|edge| edge.to)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a> ExactSizeIterator for ASIter<'a> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl Graph for ASGraph {
type Iter<'a> = ASIter<'a>;
#[inline]
fn is_empty(&self) -> bool {
self.nodes.is_empty()
}
#[inline]
fn nodes_len(&self) -> usize {
self.nodes.len()
}
fn children_of(&self, node_id: usize) -> Result<Self::Iter<'_>, Error> {
match self.nodes.get(node_id) {
Some(node) => {
let iter = node.children.iter();
Ok(Self::Iter { iter })
}
None => Err(Error::IndexOutOfBounds(node_id, self.nodes_len())),
}
}
#[inline]
fn degree(&self, node_id: usize) -> Result<usize, Error> {
match self.nodes.get(node_id) {
Some(node) => Ok(node.children.len()),
None => Err(Error::IndexOutOfBounds(node_id, self.nodes_len())),
}
}
#[inline]
fn is_empty_node(&self, node_id: usize) -> Result<bool, Error> {
match self.nodes.get(node_id) {
Some(node) => Ok(node.children.is_empty()),
None => Err(Error::IndexOutOfBounds(node_id, self.nodes_len())),
}
}
#[inline]
fn has_edge(&self, source: usize, target: usize) -> Result<bool, Error> {
if !self.has_node(source) {
Err(Error::IndexOutOfBounds(source, self.nodes_len()))
} else if !self.has_node(target) {
Err(Error::IndexOutOfBounds(target, self.nodes_len()))
} else {
Ok(self
.nodes
.get(source)
.unwrap()
.children
.contains(&ASEdge::new(target)))
}
}
}
impl ExtGraph for ASGraph {
fn extend(&mut self, edges: impl IntoIterator<Item = usize>) -> Result<usize, Error> {
let mut new_node_children = Set::default();
for edge_to in edges.into_iter() {
if !self.has_node(edge_to) {
return Err(Error::IndexOutOfBounds(edge_to, self.nodes_len()));
}
new_node_children.insert(ASEdge::new(edge_to));
}
let new_node = ASNode::new(new_node_children);
self.nodes.push(new_node);
Ok(self.nodes.len() - 1)
}
}
#[cfg(test)]
mod asgraph_test {
use super::*;
#[test]
fn test_graph_apis() -> Result<(), Error> {
let mut graph = ASGraph::default();
assert!(graph.is_empty());
graph.extend(std::iter::empty())?;
graph.extend([0].iter().copied())?;
graph.extend([0, 1].iter().copied())?;
graph.extend([0, 2].iter().copied())?;
graph.extend([1, 2].iter().copied())?;
graph.extend([1, 2, 3].iter().copied())?;
let graph = graph;
assert_eq!(graph.nodes_len(), 6);
assert_eq!(graph.children_of(5)?.collect::<Set<_>>(), {
let mut set = Set::default();
set.insert(1);
set.insert(3);
set.insert(2);
set
});
assert_eq!(graph.degree(4)?, 2);
assert!(graph.is_empty_node(0)?);
assert!(!graph.is_empty_node(1)?);
assert!(graph.has_edge(3, 2)?);
assert!(!graph.has_edge(3, 1)?);
assert_eq!(graph.has_edge(3, 6), Err(Error::IndexOutOfBounds(6, 6)));
Ok(())
}
#[test]
fn test_extending_algraph_normal() -> Result<(), Error> {
let mut graph = ASGraph::default();
let new = graph.extend(std::iter::empty())?;
println!("new index = {new}");
println!("new graph = {graph:?}");
let new = graph.extend([0].iter().copied())?;
println!("new index = {new}");
println!("new graph = {graph:?}");
let new = graph.extend([0, 1].iter().copied())?;
println!("new index = {new}");
println!("new graph = {graph:?}");
Ok(())
}
#[test]
fn test_extending_algraph_error() -> Result<(), Error> {
let mut graph = ASGraph::default();
graph.extend(std::iter::empty())?;
graph.extend([0].iter().copied())?;
assert_eq!(
graph.extend([2].iter().copied()),
Err(Error::IndexOutOfBounds(2, 2))
);
Ok(())
}
}
|