Age | Commit message (Collapse) | Author |
|
Previously some incorrect forest nodes will be used for planting new
nodes. I cannot fix the root cause of their presence in the
chain-rule machine. But I can ignore them when they are encountered.
Of course I would like to really prevent them from existing, but still
cannot figure out how.
|
|
Not bug deals but adjustments of details.
|
|
* chain/src/item/default/splone.rs: A function for finding the node to
plant used to ignore the condition that the children should match.
Now this is fixed.
|
|
* chain/src/item/mod.rs: Some function and enum are needed across
crates.
|
|
Some bugs are fixed:
1. If a non-terminal expansion can be reduced immediately, previously
an extra node would be created that had no parents. Now this strange
behaviour is corrected.
2. When performing reductions, a leaf non-terminal node would
previously be regarded as completed. Now we will first try to
complete that node, and then determine if the completion is
successful, and finally determine the completedness according to the
result.
Of course some more tests are still pending, before I can confirm that
no more bugs lurk around.
|
|
* chain/src/item/default/printer.lldb:
* chain/src/item/default/printer.py: These are for experimenting with
debugger supports.
|
|
* chain/src/item/default/mod.rs:
* graph/src/labelled/binary.rs:
* graph/src/labelled/double.rs:
* graph/src/lib.rs: If we set the option "ordering" to be "out" in the
declaration of nodes at the beginning, then GraphViz will not change
the order of children out of nodes. This is much better looking in
my opinion.
* INSTALL: make insists in changing this file, so let it be.
|
|
This bumping of version is insignificant. I just find it notable that
I seem to finally obtain a version without trivial bugs. Hooray!
|
|
* chain/src/item/genins.rs: The absolute path is too long and
unnecessary.
|
|
* chain/src/item/default/splone.rs: Previouslt the function
`split_node` used to split the parents of splitted nodes by an ugly
logic. Now that is moved into a dedicated function, which properly
handles the splitting of parents, including the case when the new
node is open whereas the old node is closed, in which situation we
ought to put the new node under the opened node only, as a closed
node cannot contain an open node as a child by definition.
|
|
Previously a virtual fragment did not receive proper ending positions.
This is now fixed.
Additionally, after this fix, the function `set_pos` is only called
with the last parameter set to `t`. Maybe I shall remove this
parameter.
|
|
The function `set_pos` is kind of subtle and its behaviour needs a
unit test so that we can be sure that it does not accidentally set the
ending positions in a careless manner.
|
|
Previously when generating a fragment of the forest corresponding to
the expansion of a non-terminal by a terminal, we incorrectly set the
end of every node within it to be one plus the start, if the expansion
happens due to a reduction.
Now this mistake is fixed and the ending positions are correctly set.
|
|
* chain/src/item/default/splone.rs: Previously when we split nodes, we
always clone the parent if the labels differ. This turns out to be
incorrect if the new label is open whereas the old label is closed.
In that case, the old parent should not contain the new node as a
child, as a closed node should not contain an open node.
I am not yet entirely sure this fix is correct, so more test await
us.
|
|
In the process of splitting, cloning, and planting the forest, I
forgot to check whether some cloned node of the node inquestion
satisfy the condition. This used to cause forests that violate some
fundamental assumptions. Now this is supposed to be fixed, but more
tests await us.
|
|
|
|
Previously the functions `is_prefix` and `plant` did not take the
situation of packed nodes into considerations. That was because I
only dealt with non-packed nodes in the past: the fragment to test for
prefixes and for planting did not intersect the packed nodes in the
forest, and the grammar is so simple that the fragments do not contain
packed nodes.
Then a test revealed this situation, so I have to fix this lack of
considerations now. This commit attempts to fix this issue.
From the newly added unit-tests, it seems that this fix works. :)
|
|
Now the binding part is finished.
What remains is a bug encountered when planting a fragment to the
forest which intersects a packed node, which would lead to invalid
forests. This will also cause problem when planting a packed
fragment, but until now my testing grammars do not produce packed
fragments, so this problem is not encountered yet.
I am still figuring out efficient ways to solve this problem.
|
|
There were two main issues in the previous version.
One is that there are lots of duplications of nodes when manipulating
the forest. This does not mean that labels repeat: by the use of the
data type this cannot happen. What happened is that there were cloned
nodes whose children are exactly equal. In this case there is no need
to clone that node in the first place. This is now fixed by checking
carefully before cloning, so that we do not clone unnecessary nodes.
The other issue, which is perhaps more important, is that there are
nodes which are not closed. This means that when there should be a
reuction of grammar rules, the forest does not mark the corresponding
node as already reduced. The incorrect forests thus caused is hard to
fix: I tried several different approaches to fix it afterwards, but
all to no avail. I also tried to record enough information to fix
these nodes during the manipulations. It turned out that recording
nodes is a dead end, as I cannot properly syncronize the information
in the forest and the information in the chain-rule machine. Any
inconsistencies will result in incorrect operations later on.
The approach I finally adapt is to perform every possible reduction at
each step. This might lead to some more nodes than what we need. But
those are technically expected to be there after all, and it is easy
to filter them out, so it is fine, from my point of view at the
moment.
Therefore, what remains is to filter those nodes out and connect it to
the holy Emacs. :D
|
|
Generally speaking the algorithm now works correctly and produces the
right shape of forest for the test ambiguous grammar as well. It does
not correctly perform the "reductions". It seems that I deliberately
disabled this part of the functionalities in a previous debugging
tour.
So I have to enable it again and see if it works.
|
|
I should have staged and committed these changes separately, but I am
too lazy to deal with that.
The main changes in this commit are that I added the derive macro that
automates the delegation of the Graph trait. This saves a lot of
boiler-plate codes.
The second main change, perhaps the most important one, is that I
found and tried to fix a bug that caused duplication of nodes. The
bug arises from splitting or cloning a node multiple times, and
immediately planting the same fragment under the new "sploned" node.
That is, when we try to splone the node again, we found that we need
to splone, because the node that was created by the same sploning
process now has a different label because of the planting of the
fragment. Then after the sploning, we plant the fragment again. This
makes the newly sploned node have the same label (except for the clone
index) and the same children as the node that was sploned and planted
in the previous rounds.
The fix is to check for the existence of a node that has the same set
of children as the about-to-be-sploned node, except for the last one,
which contains the about-to-be-planted fragment as a prefix. If that
is the case, treat it as an already existing node, so that we do not
have to splone the node again.
This is consistent with the principle to not create what we do not
need.
|
|
Finished the function of performing extra reductions.
Still untested though.
|
|
In the chain-rule machine, we need to skip through edges whose labels
are "accepting", otherwise the time complexity will be high even for
simple grammars. This implies that we will skip some "jumping up" in
the item derivation forest. So we need to record these extra jumping
up, in order to jump up at a later point.
This Reducer type plays this role. But I still need more experiments
to see if this approach works out as I intended.
|
|
* chain/src/item/genins.rs: Some minor fixes according to clippy.
|
|
I decide to adopt a new approach of recording and updating item
derivation forests. Since this affects a lot of things, I decide to
commit before the refactor, so that I can create a branch for that
refactor.
|
|
Previously there was a minor bug: if the chain-rule machine ended in a
node without children, which node should be accepting because of edges
that have no children and hence were ignored, then since the node has
no children, it would be regarded as not accepting. Now this issue is
fixed by introducting real or imaginary edges, where an imaginary edge
is used to determine the acceptance of nodes without chidlren.
|
|
Previously cloning a node does not alter the root of the forest, while
it should alter the root if the cloned node was the root. This would
affect how we compare the equalities of forests. It indeed resulted
in anomalies that were hard to solve.
|
|
I need more than the ability to clone nodes: I also need to split the
nodes. Now this seems to be correctly added.
|
|
Finally the prototype parser has produced the first correct forest.
It is my first time to generate a correct forest, in fact, ever since
the beginning of this project.
|
|
It seems to be complete now, but still awaits more tests to see where
the errors are, which should be plenty, haha.
|