Age | Commit message (Collapse) | Author |
|
I have fixed another bug and think that the version of a more stable
version is worth bumping the versions for.
|
|
I should have staged and committed these changes separately, but I am
too lazy to deal with that.
The main changes in this commit are that I added the derive macro that
automates the delegation of the Graph trait. This saves a lot of
boiler-plate codes.
The second main change, perhaps the most important one, is that I
found and tried to fix a bug that caused duplication of nodes. The
bug arises from splitting or cloning a node multiple times, and
immediately planting the same fragment under the new "sploned" node.
That is, when we try to splone the node again, we found that we need
to splone, because the node that was created by the same sploning
process now has a different label because of the planting of the
fragment. Then after the sploning, we plant the fragment again. This
makes the newly sploned node have the same label (except for the clone
index) and the same children as the node that was sploned and planted
in the previous rounds.
The fix is to check for the existence of a node that has the same set
of children as the about-to-be-sploned node, except for the last one,
which contains the about-to-be-planted fragment as a prefix. If that
is the case, treat it as an already existing node, so that we do not
have to splone the node again.
This is consistent with the principle to not create what we do not
need.
|
|
It seems to be complete now, but still awaits more tests to see where
the errors are, which should be plenty, haha.
|
|
I have an ostensibly working prototype now.
Further tests are needed to make sure that the algorithm meets the
time complexity requirement, though.
|
|
I put functionalities that are not strictly core to separate crates,
so that the whole package becomes more modular, and makes it easier to
try other parsing algorithms in the future.
Also I have to figure the forests out before finishing the core
chain-rule algorithm, as the part about forests affects the labels of
the grammars directly. From my experiences in writing the previous
version, it is asking for trouble to change the labels type
dramatically at a later point: too many places need to be changed.
Thus I decide to figure the rough part of forests out.
Actually I only have to figure out how to attach forests fragments to
edges of the underlying atomic languages, and the more complex parts
of putting forests together can be left to the recorders, which is my
vision of assembling semi-ring values during the chain-rule machine.
It should be relatively easy to produce forests fragments from
grammars since we are just trying to extract some information from the
grammar, not to manipulate those information in some complicated way.
We have to do some manipulations in the process, though, in order to
make sure that the nulling and epsilon-removal processes do not
invalidate these fragments.
|
|
Some changes:
- The core crate is renamed to "chain".
- The crate "viz" is added, which will provide layered graph drawing
algorithms.
- A function is added to convert from a grammar to the regular
language of its left-linear closures.
- A function is added to convert from a nondeterministic finite
automaton to its "null" closure. A null closure is the same
automaton with edges added, as if some edges are "null". Whether an
edge is null is determined by a function.
Combined with the previous change, we can convert a grammar to the
regular language of the null closure of its left-linear closures.
---
Now it remains to test more grammars and add an Atom trait, before
finishing the part about compilations.
|