diff options
Diffstat (limited to 'chain/src/default.rs')
-rw-r--r-- | chain/src/default.rs | 784 |
1 files changed, 776 insertions, 8 deletions
diff --git a/chain/src/default.rs b/chain/src/default.rs index e04be9f..697b997 100644 --- a/chain/src/default.rs +++ b/chain/src/default.rs @@ -6,18 +6,47 @@ //! modular design makes that easy. use super::*; +use crate::atom::{Atom, DefaultAtom}; use core::fmt::Display; +use forest::{default::DefaultForest, Forest}; +use grammar::{Error as GrammarError, GrammarLabel, GrammarLabelType, TNT}; +#[allow(unused_imports)] +use graph::{ + labelled::DLGBuilder, Builder, DLGraph, Graph, LabelExtGraph, LabelGraph, ParentsGraph, +}; + +use std::collections::{HashMap as Map, TryReserveError}; /// The errors related to taking derivatives by chain rule. +#[non_exhaustive] #[derive(Debug)] pub enum Error { + /// General error for indices out of bounds. + IndexOutOfBounds(usize, usize), + /// The forest encounters a duplicate node, for some reason. + DuplicateNode(usize), + /// The chain rule machine encounters a duplicate edge, for some + /// reason. + DuplicateEdge(usize, usize), + /// A node has no labels while it is required to have one. + NodeNoLabel(usize), + /// Reserving memory fails. + CannotReserve(TryReserveError), /// An invalid situation happens. Invalid, } impl Display for Error { - fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { match self { + Self::IndexOutOfBounds(index, bound) => write!(f, "index {index} out of bound {bound}"), + Self::DuplicateNode(n) => write!(f, "the forest has a node {n} with a duplicate label"), + Self::DuplicateEdge(source, target) => write!( + f, + "the forest has a duplicate edge from {source} to {target}" + ), + Self::NodeNoLabel(n) => write!(f, "node {n} has no labels while it should have one"), + Self::CannotReserve(e) => write!(f, "cannot reserve memory: {e}"), Self::Invalid => write!(f, "invalid"), } } @@ -25,22 +54,761 @@ impl Display for Error { impl std::error::Error for Error {} +impl From<GError> for Error { + fn from(value: GError) -> Self { + match value { + GError::IndexOutOfBounds(index, bound) => Self::IndexOutOfBounds(index, bound), + GError::DuplicatedNode(n) => Self::DuplicateNode(n), + GError::DuplicatedEdge(source, target) => Self::DuplicateEdge(source, target), + _ => Self::Invalid, + } + } +} + +impl From<ForestError> for Error { + fn from(e: ForestError) -> Self { + match e { + ForestError::IndexOutOfBounds(index, bound) => Error::IndexOutOfBounds(index, bound), + ForestError::DuplicatedNode(n) => Error::DuplicateNode(n), + ForestError::InvalidGraphError(ge) => ge.into(), + ForestError::NodeNoLabel(n) => Error::NodeNoLabel(n), + } + } +} + +impl From<TryReserveError> for Error { + fn from(value: TryReserveError) -> Self { + Self::CannotReserve(value) + } +} + +/// The type of an index into an element in [`DerIter`]. +#[derive(Debug, Copy, Clone)] +enum DerIterIndex { + Single(usize), + Map(usize), +} + +impl Default for DerIterIndex { + fn default() -> Self { + Self::Map(0) + } +} + +/// A complex type used for storing values of edges with two layers. +type SecondTypeValue = (Parent, bool, Vec<(Edge, usize)>); + +/// An iterator of TwoLayers. +#[derive(Debug, Default)] +pub struct DerIter { + /// Stores edges of only one layer. + singles: Vec<(Edge, usize)>, + /// Stores edges with two layers. They are grouped by their + /// labels of the second layer. + /// + /// The values are tuples (forest_source, accepting, edges), where + /// the edges are the grouped edges of the first layer and the + /// destination. + seconds: Map<usize, SecondTypeValue>, + /// We want to iterate the elements of the map, for which purpose + /// we need an array. Since hashmaps provide no arrays, we keep + /// an array of keys for iteration purposes. + second_array: Vec<usize>, + /// The index of the current element, either in `second_array` or + /// in `singles` . + index: DerIterIndex, +} + +impl DerIter { + fn add_second_layer( + &mut self, + label: usize, + forest_source: Parent, + accepting: bool, + edges: Vec<(Edge, usize)>, + ) { + if let Some((_, _, vec)) = self.seconds.get_mut(&label) { + vec.extend(edges); + } else { + self.seconds + .insert(label, (forest_source, accepting, edges)); + + self.second_array.push(label); + } + } +} + +impl Iterator for DerIter { + type Item = TwoLayers; + + fn next(&mut self) -> Option<Self::Item> { + // We iterate through two layered edges first. + match self.index { + DerIterIndex::Map(index) => { + if let Some(key) = self.second_array.get(index) { + if let Some((forest_source, accepting, edges)) = self.seconds.remove(key) { + self.index = DerIterIndex::Map(index + 1); + + Some(TwoLayers::Two(*key, forest_source, accepting, edges)) + } else { + // this should not happen + println!("a key does not exist in the hashmap: something is wrong when taking derivatives"); + None + } + } else { + self.index = DerIterIndex::Single(0); + + if let Some((edge, to)) = self.singles.first() { + self.index = DerIterIndex::Single(1); + + Some(TwoLayers::One(*edge, *to)) + } else { + None + } + } + } + DerIterIndex::Single(index) => { + if let Some((edge, to)) = self.singles.get(index) { + self.index = DerIterIndex::Single(index + 1); + + Some(TwoLayers::One(*edge, *to)) + } else { + None + } + } + } + } +} + /// A default implementation for the [`Chain`] trait. #[derive(Debug, Clone, Default)] -pub struct DefaultChain {} +pub struct DefaultChain { + graph: DLGraph<Edge>, + atom: DefaultAtom, + current: usize, + history: Vec<usize>, + forest: DefaultForest<GrammarLabel>, + accepting_vec: Vec<bool>, +} + +impl DefaultChain { + /// Return the current node. + #[inline] + pub fn current(&self) -> usize { + self.current + } + + /// Return the complete slice of histories. + #[inline] + pub fn history(&self) -> &[usize] { + self.history.as_ref() + } + + /// Return a reference to the associated forest. + #[inline] + pub fn forest(&self) -> &DefaultForest<GrammarLabel> { + &self.forest + } + + /// Print the rule positions of the labels. + pub fn print_rule_positions(&self) -> Result<(), Box<dyn std::error::Error>> { + let mut labels = std::collections::HashSet::<usize>::default(); + + for node in 0..self.graph.nodes_len() { + labels.extend(self.graph.labels_of(node)?.map(|(label, _)| label.label)); + } + + for label in labels.into_iter() { + println!("{}", self.atom.rule_pos_string(label)?); + } + + Ok(()) + } +} + +impl Graph for DefaultChain { + type Iter<'a> = <DLGraph<Edge> as Graph>::Iter<'a> + where + Self: 'a; + + #[inline] + fn is_empty(&self) -> bool { + self.graph.is_empty() + } + + #[inline] + fn nodes_len(&self) -> usize { + self.graph.nodes_len() + } + + #[inline] + fn edges_len(&self) -> Option<usize> { + self.graph.edges_len() + } + + #[inline] + fn children_of(&self, node_id: usize) -> Result<Self::Iter<'_>, GError> { + self.graph.children_of(node_id) + } + + #[inline] + fn degree(&self, node_id: usize) -> Result<usize, GError> { + self.graph.degree(node_id) + } + + #[inline] + fn is_empty_node(&self, node_id: usize) -> Result<bool, GError> { + self.graph.is_empty_node(node_id) + } + + #[inline] + fn has_edge(&self, source: usize, target: usize) -> Result<bool, GError> { + self.graph.has_edge(source, target) + } + + fn replace_by_builder(&mut self, _builder: impl graph::Builder<Result = Self>) { + unimplemented!("I shall refactor this") + } +} + +impl LabelGraph<Edge> for DefaultChain { + type Iter<'a> = <DLGraph<Edge> as LabelGraph<Edge>>::Iter<'a> + where + Self: 'a; + + type LabelIter<'a> = <DLGraph<Edge> as LabelGraph<Edge>>::LabelIter<'a> + where + Self: 'a, + Edge: 'a; + + type EdgeLabelIter<'a> = <DLGraph<Edge> as LabelGraph<Edge>>::EdgeLabelIter<'a> + where + Self: 'a, + Edge: 'a; + + #[inline] + fn edge_label(&self, source: usize, target: usize) -> Result<Self::EdgeLabelIter<'_>, GError> { + self.graph.edge_label(source, target) + } + + #[inline] + fn find_children_with_label( + &self, + node_id: usize, + label: &Edge, + ) -> Result<<Self as LabelGraph<Edge>>::Iter<'_>, GError> { + self.graph.find_children_with_label(node_id, label) + } + + #[inline] + fn labels_of(&self, node_id: usize) -> Result<Self::LabelIter<'_>, GError> { + self.graph.labels_of(node_id) + } + + #[inline] + fn has_edge_label(&self, node_id: usize, label: &Edge, target: usize) -> Result<bool, GError> { + self.graph.has_edge_label(node_id, label, target) + } +} + +impl LabelExtGraph<Edge> for DefaultChain { + #[inline] + fn extend(&mut self, edges: impl IntoIterator<Item = (Edge, usize)>) -> Result<usize, GError> { + let new = self.graph.extend(edges)?; + let accepting_len = self.accepting_vec.len(); + + if self.accepting_vec.get(new).is_none() { + // assert it can only grow by one node at a time. + #[cfg(debug_assertions)] + assert_eq!(new, accepting_len); + + let mut updated = false; + + for (label, child_iter) in self.graph.labels_of(new)? { + let old_accepting = { + let mut result = false; + for child in child_iter { + if *self + .accepting_vec + .get(child) + .ok_or(GError::IndexOutOfBounds(child, accepting_len))? + { + result = true; + break; + } + } + + result + }; + + if !old_accepting { + self.accepting_vec.push(false); + updated = true; + + break; + } + + if label.is_accepting() { + self.accepting_vec.push(true); + updated = true; + + break; + } + } + + if !updated { + self.accepting_vec.push(false); + } + } + + Ok(new) + } +} impl Chain for DefaultChain { type Error = Error; - fn unit() -> Self { - todo!() + type Atom = DefaultAtom; + + fn unit(atom: Self::Atom) -> Result<Self, Self::Error> { + let mut builder: DLGBuilder<Edge> = Default::default(); + + let root = builder.add_vertex(); + let first = builder.add_vertex(); + + let empty_state = atom.empty(); + + let initial_nullable = atom + .is_nullable(0) + .map_err(|_| Error::IndexOutOfBounds(0, atom.non_num()))?; + + builder.add_edge( + first, + root, + Edge::new(empty_state, Parent::new(0, 0), initial_nullable), + )?; + + let graph = builder.build(); + + let forest = + DefaultForest::new_leaf(GrammarLabel::new(GrammarLabelType::TNT(TNT::Non(0)), 0)); + + #[cfg(debug_assertions)] + assert_eq!(forest.root(), Some(0)); + + let current = 1; + + let history = Vec::new(); + + let accepting_vec = vec![true, initial_nullable]; + + Ok(Self { + graph, + atom, + current, + history, + forest, + accepting_vec, + }) + } + + fn epsilon(&self) -> Result<bool, Self::Error> { + self.accepting_vec + .get(self.current) + .copied() + .ok_or(Error::IndexOutOfBounds( + self.current, + self.accepting_vec.len(), + )) + } + + fn update_history(&mut self, new: usize) { + debug_assert!(new < self.graph.nodes_len()); + + self.history.push(self.current); + + self.current = new; + } + + type DerIter = DerIter; + + fn derive(&mut self, t: usize, pos: usize) -> Result<Self::DerIter, Self::Error> { + use TNT::*; + + /// Convert an error telling us that an index is out of bounds. + /// + /// # Panics + /// + /// The function panics if the error is not of the expected + /// kind. + fn index_out_of_bounds_conversion(ge: GrammarError) -> Error { + match ge { + GrammarError::IndexOutOfBounds(index, bound) => { + Error::IndexOutOfBounds(index, bound) + } + _ => panic!("wrong error kind"), + } + } + + /// A helper function to generate edges to join. + /// + /// It first checks if the base edge is accepting. If yes, + /// then pull in the children of the target. + /// + /// Then check if the label of the base edge has children. If + /// no, then do not add this base edge itself. + /// + /// The generated edges will be pushed to `output` directly, + /// to save some allocations. + // TODO: Handle forests as well. + fn generate_edges( + chain: &DefaultChain, + child_iter: impl Iterator<Item = usize> + ExactSizeIterator + Clone, + atom_child_iter: impl Iterator<Item = usize> + Clone, + mut output: impl AsMut<Vec<(Edge, usize)>>, + ) -> Result<(), Error> { + // First check the values from iterators are all valid. + let graph_len = chain.graph.nodes_len(); + let atom_len = chain.atom.nodes_len(); + + for child in child_iter.clone() { + if !chain.graph.has_node(child) { + return Err(Error::IndexOutOfBounds(child, graph_len)); + } + } + + for atom_child in atom_child_iter.clone() { + if !chain.atom.has_node(atom_child) { + return Err(Error::IndexOutOfBounds(atom_child, atom_len)); + } + } + + // From now on the nodes are all valid, so we can just + // call `unwrap`. + + // Then calculate the number of edges to append, to avoid + // repeated allocations + let mut num = 0usize; + + let child_iter_total_degree = child_iter + .clone() + .map(|child| chain.graph.degree(child).unwrap()) + .sum::<usize>(); + + for atom_child in atom_child_iter.clone() { + let atom_child_accepting = chain.atom.is_accepting(atom_child).unwrap(); + let atom_child_empty_node = chain.atom.is_empty_node(atom_child).unwrap(); + + if !atom_child_empty_node { + num += child_iter.len(); + } + + if atom_child_accepting { + num += child_iter_total_degree; + } + } + + let num = num; + + let output = output.as_mut(); + + output.try_reserve(num)?; + + // now push into output + + let parent = Parent::new(0, 0); + + for atom_child in atom_child_iter.clone() { + let atom_child_accepting = chain.atom.is_accepting(atom_child).unwrap(); + let atom_child_empty_node = chain.atom.is_empty_node(atom_child).unwrap(); + + let edge = Edge::new(atom_child, parent, atom_child_accepting); + + if !atom_child_empty_node { + output.extend(child_iter.clone().map(|child| (edge, child))); + } + + if atom_child_accepting { + for child in child_iter.clone() { + for (child_label, child_child) in chain.graph.labels_of(child).unwrap() { + output.extend(child_child.map(|target| (*child_label, target))); + } + } + } + } + + Ok(()) + } + + let mut der_iter = DerIter::default(); + + for (label, child_iter) in self.graph.labels_of(self.current)? { + for (atom_label, atom_child_iter) in self.atom.labels_of(label.label())? { + if atom_label.is_left_p() { + // We do not consider left-linearly expanded + // children in the first layer. + continue; + } + + match *atom_label.get_value() { + Some(Ter(ter)) if ter == t => { + generate_edges( + self, + child_iter.clone(), + atom_child_iter.clone(), + &mut der_iter.singles, + )?; + } + Some(Non(non)) => { + let virtual_node = self + .atom + .atom(non, t) + .map_err(index_out_of_bounds_conversion)?; + + if let Some(virtual_node) = virtual_node { + let accepting = self + .atom + .is_accepting(virtual_node) + .map_err(index_out_of_bounds_conversion)?; + + let mut new_edges = Vec::new(); + + generate_edges( + self, + child_iter.clone(), + atom_child_iter.clone(), + &mut new_edges, + )?; + + if accepting { + der_iter.singles.extend(new_edges.clone()); + } + + let parent = Parent::new(0, 0); + + if !self.atom.is_empty_node(virtual_node).unwrap() { + der_iter.add_second_layer( + virtual_node, + parent, + accepting, + new_edges, + ); + + // account for atom_children without + // children. + + for atom_child in atom_child_iter { + // this has been checked in + // `generate_edges` + if self.atom.is_empty_node(atom_child).unwrap() { + der_iter.singles.extend(child_iter.clone().map(|child| { + (Edge::new(virtual_node, parent, accepting), child) + })); + } + } + } else { + for atom_child in atom_child_iter { + // this has been checked in + // `generate_edges` + if self.atom.is_empty_node(atom_child).unwrap() { + // flat flat map, hmm... + der_iter.singles.extend(child_iter.clone().flat_map( + |child| { + self.graph.labels_of(child).unwrap().flat_map( + |(child_label, child_child_iter)| { + child_child_iter.map(|child_child| { + (*child_label, child_child) + }) + }, + ) + }, + )); + } + } + } + } + } + _ => { + continue; + } + } + } + } + + Ok(der_iter) + } +} + +#[cfg(test)] +mod test_der_iter { + use super::*; + + #[test] + fn test() -> Result<(), Box<dyn std::error::Error>> { + let mut der_iter = DerIter::default(); + + let parent = Parent::new(0, 0); + + der_iter.singles.push((Edge::new(0, parent, true), 0)); + + der_iter.singles.push((Edge::new(1, parent, true), 0)); + + der_iter.singles.push((Edge::new(2, parent, true), 0)); + + der_iter.add_second_layer(3, parent, true, vec![(Edge::new(4, parent, true), 1)]); + + der_iter.add_second_layer(6, parent, true, vec![(Edge::new(5, parent, true), 1)]); + + // add an entry with a repeated label + der_iter.add_second_layer(3, parent, true, vec![(Edge::new(7, parent, true), 2)]); + + assert_eq!( + der_iter.next(), + Some(TwoLayers::Two( + 3, + parent, + true, + vec![ + (Edge::new(4, parent, true), 1), + (Edge::new(7, parent, true), 2) + ] + )) + ); + + assert_eq!( + der_iter.next(), + Some(TwoLayers::Two( + 6, + parent, + true, + vec![(Edge::new(5, parent, true), 1)] + )) + ); + + assert_eq!( + der_iter.next(), + Some(TwoLayers::One(Edge::new(0, parent, true), 0)) + ); + + assert_eq!( + der_iter.next(), + Some(TwoLayers::One(Edge::new(1, parent, true), 0)) + ); + + assert_eq!( + der_iter.next(), + Some(TwoLayers::One(Edge::new(2, parent, true), 0)) + ); + + assert_eq!(der_iter.next(), None); + assert_eq!(der_iter.next(), None); + + Ok(()) } +} + +#[cfg(test)] +mod test_chain { + use super::*; + use grammar::test_grammar_helper::*; + + #[test] + fn base_test() -> Result<(), Box<dyn std::error::Error>> { + let grammar = new_notes_grammar()?; + + let atom = DefaultAtom::from_grammar(grammar)?; + + let mut chain = DefaultChain::unit(atom)?; + + chain.chain(3, 00)?; + chain.chain(1, 01)?; + chain.chain(2, 02)?; + chain.chain(2, 03)?; + chain.chain(2, 04)?; + chain.chain(0, 05)?; + chain.chain(5, 06)?; + chain.chain(1, 07)?; + chain.chain(6, 08)?; + chain.chain(6, 09)?; + chain.chain(6, 10)?; + chain.chain(0, 11)?; + chain.chain(0, 12)?; + + assert!(matches!(chain.epsilon(), Ok(true))); + + #[cfg(feature = "test-print-viz")] + { + chain.graph.print_viz("chain.gv")?; + chain.atom.print_nfa("nfa.gv")?; + } - fn chain(&mut self, _t: usize) { - todo!() + Ok(()) } - fn epsilon(&self) -> bool { - todo!() + #[test] + fn test_speed() -> Result<(), Box<dyn std::error::Error>> { + let grammar = new_notes_grammar_no_regexp()?; + + println!("grammar: {grammar}"); + + let atom = DefaultAtom::from_grammar(grammar)?; + + let mut chain = DefaultChain::unit(atom)?; + + let input_template = vec![3, 1, 2, 2, 2, 0, 5, 1, 6, 6, 6, 0, 0]; + + let repeat_times = { + let mut result = 1; + + for arg in std::env::args() { + let parse_as_digit: Result<usize, _> = arg.parse(); + + if let Ok(parse_result) = parse_as_digit { + result = parse_result; + + break; + } + } + + result + }; + + println!("repeating {repeat_times} times"); + + let input = { + let mut result = Vec::with_capacity(input_template.len() * repeat_times); + + for _ in 0..repeat_times { + result.extend(input_template.iter().copied()); + } + + result + }; + + let start = std::time::Instant::now(); + + for (index, t) in input.iter().copied().enumerate() { + chain.chain(t, index)?; + } + + let elapsed = start.elapsed(); + + // assert!(matches!(chain.epsilon(), Ok(true))); + + dbg!(elapsed); + dbg!(chain.current()); + + println!("index: terminal, history"); + for (index, t) in input.iter().copied().enumerate().take(input.len() - 1) { + println!("{index}: {t}, {}", chain.history().get(index).unwrap()); + } + + #[cfg(feature = "test-print-viz")] + { + chain.graph.print_viz("chain.gv")?; + chain.atom.print_nfa("nfa.gv")?; + } + + Ok(()) } } |