//! This module implements the generation and insertion of item //! derivation forests. //! //! This is used for the chain-rule machine to conveniently produce //! item derivations into a forest. This forest can serve as a rough //! approximation of the parse forests, and can be executed in other //! semirings later on. use super::*; use crate::{ atom::{Atom, DefaultAtom}, default::Error, item::default::DefaultForest, Edge, }; use grammar::{Error as GrammarError, GrammarLabel, GrammarLabelType, TNT}; #[allow(unused_imports)] use graph::{builder::BuilderMut, labelled::binary::PLGBuilderMut, Graph, RedirectGraph}; use core::borrow::Borrow; /// Convert an error telling us that an index is out of bounds. /// /// # Panics /// /// The function panics if the error is not of the expected kind. pub(crate) fn index_out_of_bounds_conversion(ge: GrammarError) -> Error { match ge { GrammarError::IndexOutOfBounds(index, bound) => Error::IndexOutOfBounds(index, bound), _ => Error::Invalid, } } /// Determine if a label is labelled by a terminal. fn is_labelled_by_terminal(label: GrammarLabelType) -> bool { matches!(label.tnt(), Some(t) if matches!(t, TNT::Ter(_))) } /// A helper function to generate a fragment of forest. /// /// It simply constructs a root node and then appends /// successive nodes as successive children of the previous /// node. Also the starting positions will all be set to the /// same position. /// /// If the input is empty, this returns an empty forest; /// otherwise the result is not empty. pub fn generate_fragment( labels: impl AsRef<[GrammarLabelType]>, pos: usize, ) -> Result>, crate::default::Error> { let labels_slice = labels.as_ref(); let labels_len = labels_slice.len(); let last_label = if labels_len > 0 { labels_slice.get(labels_len - 1).copied().unwrap() } else { return Ok(Default::default()); }; let labels_iter = labels_slice.iter(); let labels_iter_zipped = labels_iter .clone() .zip(labels_iter.skip(1).chain(std::iter::once(&last_label))); let mut mapped_iter = labels_iter_zipped.map(|(label, next_label)| { if is_labelled_by_terminal(*next_label) { GrammarLabel::new_closed(*label, pos, pos + 1) } else { GrammarLabel::new(*label, pos) } }); let first_label = mapped_iter.next().unwrap(); let mut result = DefaultForest::new_leaf(first_label); let mut index = 0; for label in mapped_iter { result.plant(index, DefaultForest::new_leaf(label), false)?; index = result .query_label(label.into()) // REVIEW: Perhaps a LabelNoNode error? .ok_or(Error::Invalid)?; } Ok(result) } /// Generate a virtual fragment representing the left-linear null /// closure \[nt\]^t. pub fn virtual_generate_fragment( atom: impl Borrow, nt: usize, t: usize, pos: usize, ) -> Result>, crate::default::Error> { let atom = atom.borrow(); let non_start = atom.nth_accumulator(nt).unwrap() * 2; let mut result = DefaultForest::default(); for (label, child_iter) in atom.labels_of(non_start)? { if matches!(*label.get_value(), Some(TNT::Ter(ter)) if ter == t) { for child in child_iter { let line: Vec = atom .query_expansion(non_start, child) .map_err(index_out_of_bounds_conversion)? .iter() .copied() .flatten() .flat_map(|(nt, rule)| [(*rule).into(), TNT::Non(*nt).into()]) .rev() .chain(std::iter::once(TNT::Ter(t).into())) .collect(); if result.is_empty() { result = generate_fragment(line, pos)?; } else { let mut new_fragment = generate_fragment(line, pos)?; new_fragment.remove_node(0)?; new_fragment.set_root(1)?; let cloned = result.clone_node(0, 0, false)?; result.plant(cloned, new_fragment, false)?; } } } } Ok(result) } // TODO: Examine `insert_item` again. impl DefaultForest> { /// Insert an item derivation forest into a recording forest. /// /// We need the help of other things just for finding the correct /// places to insert these item fragments. pub(crate) fn insert_item( &mut self, label: Edge, fragment: impl Borrow>>, atom_child_iter: impl Iterator + ExactSizeIterator + Clone, atom: &DefaultAtom, ) -> Result { let root = if let Some(root) = self.root() { root } else { panic!("the forest must be non-empty when we insert items"); }; let pavi = label.forest_source(); let true_source = label.true_source(); let fragment = fragment.borrow(); let fragment_root = if let Some(root) = fragment.root() { root } else { unreachable!("empty item"); }; let fragment_root_label = fragment .vertex_label(fragment_root)? .ok_or(Error::NodeNoLabel(fragment_root))?; let pos = fragment_root_label.label().start(); if pavi != true_source { dbg!(label, pos); // Completing from true_source up to the pavi let true_source_node = match true_source { PaVi::Parent(node, edge) => { let nth_child = self.nth_child(node, edge)?; let nth_child_label = self .vertex_label(nth_child)? .ok_or(Error::NodeNoLabel(nth_child))?; let nth_child_degree = self.degree(nth_child)?; let nth_child_last = if nth_child_degree > 0 { nth_child_degree - 1 } else { 0 }; if matches!(nth_child_label.label().label().tnt(), Some(TNT::Non(_))) && !nth_child_label.is_packed() { let sploned = self.splone(nth_child, Some(pos), nth_child_last, false)?; sploned } else { nth_child } } PaVi::Virtual(nt, t, mut node) => { let node_label_start = self .vertex_label(node)? .ok_or(Error::NodeNoLabel(node))? .label() .start(); let reduction_fragment = atom.generate_virtual_frags(nt, t, None); // FIXME: We shall "close" this fragment as well. for frag in reduction_fragment.into_iter().flatten() { let mut frag = frag.clone(); frag.set_pos(node_label_start)?; // NOTE: The function `plant_if_needed` // assumes that we want to plant the fragment // as the first child of the node. This // assumption holds in this case, but not in // general. node = self.plant_if_needed(node, frag)?; } node } PaVi::Empty => { dbg!(); root } }; let true_source_pos = self .vertex_label(true_source_node)? .ok_or(Error::NodeNoLabel(true_source_node))? .label() .start(); let top_node = match pavi { PaVi::Parent(node, edge) => self.nth_child(node, edge)?, PaVi::Virtual(_nt, _t, _node) => { dbg!(label); self.print_viz("dbg forest.gv").unwrap(); fragment.print_viz("dbg fragment.gv").unwrap(); unreachable!("I do not think this is possible") } PaVi::Empty => { unreachable!("The empty segment should not need to be reduced") } }; let mut stack = vec![vec![(top_node, 0)]]; let mut result_stack = Vec::new(); while let Some(mut top_stack) = stack.pop() { let (node, _) = top_stack.pop().unwrap(); let node_label = self.vertex_label(node)?.ok_or(Error::NodeNoLabel(node))?; if node_label.is_packed() { for node in self.children_of(node)? { let search_child = self.position_search(node, true_source_pos)?; if let Some((child, index)) = search_child { let mut top_stack = top_stack.clone(); // Fix the previous element top_stack.push((node, index)); if child == true_source_node { result_stack.push(top_stack); } else { top_stack.push((child, 0)); stack.push(top_stack); } } } } else { let search_child = self.position_search(node, true_source_pos)?; if let Some((child, index)) = search_child { top_stack.push((node, index)); if child == true_source_node { result_stack.push(top_stack); } else { top_stack.push((child, 0)); stack.push(top_stack); } } } } // FIXME: We have to change the pavi as well, otherwise we // are going to use the wrong branch for planting later. for stack in result_stack { // dbg!(&stack); // self.print_viz("dbg forest.gv").unwrap(); // panic!("test"); let mut first_time = true; for (node, index) in stack.into_iter().rev() { if matches!( self.vertex_label(node)? .ok_or(Error::NodeNoLabel(node))? .label() .label() .tnt(), Some(TNT::Non(_)) ) { let sploned = self.splone(node, Some(pos), index, false)?; if !first_time { let last_index = self.degree(sploned)? - 1; let last_child = self.nth_child(sploned, last_index)?; let last_child_label = self .vertex_label(last_child)? .ok_or(Error::NodeNoLabel(last_child))? .label(); if last_child_label.end() != Some(pos) { let closed_label = GrammarLabel::new_closed( last_child_label.label(), last_child_label.start(), pos, ); let closed_label_id = self .query_label(closed_label.into()) .expect("last child closed label not found"); let mut builder = PLGBuilderMut::from_graph_mut(&mut self.graph); builder.redirect(sploned, last_index, closed_label_id)?; } } first_time = false; } } } } // Ensure the last node in the PaVi is a terminal or a // non-terminal node, as an extra safety guard during // development. #[cfg(debug_assertions)] { match pavi { PaVi::Parent(node, edge) => { assert!(matches!( self.vertex_label(self.nth_child(node, edge)?), Ok(Some(label)) if label.label().label().tnt().is_some())); } PaVi::Virtual(nt, t, node) => { if !matches!( self.vertex_label(node), Ok(Some(label)) if matches!( label.label().label().tnt(), Some(TNT::Non(_)))) { dbg!(node, self.vertex_label(node)?, pavi); self.print_viz("dbg forest.gv").unwrap(); panic!("assumption fails"); } if nt >= atom.non_num() { dbg!(); return Err(Error::IndexOutOfBounds(nt, atom.non_num())); } if t >= atom.ter_num() { dbg!(); return Err(Error::IndexOutOfBounds(t, atom.ter_num())); } } PaVi::Empty => {} } } let is_empty_segment = pavi.is_empty(); let mut parents: Vec = { let mut result = Vec::new(); match pavi { PaVi::Parent(node, edge) => { result.push(Parent::new(node, edge)); } PaVi::Virtual(nt, t, node) => { let node_label = self.vertex_label(node)?.ok_or(Error::NodeNoLabel(node))?; for atom_child in atom_child_iter.clone() { for rule in atom.trace(nt, t, atom_child).into_iter().flatten() { let virtual_frag = atom.generate_virtual_frags(nt, t, Some(rule)); if let Some(frag) = virtual_frag { let mut frag = (*frag.get(0).unwrap()).clone(); frag.set_pos(node_label.label().start())?; let frag_nodes_len = frag.nodes_len(); assert!(frag_nodes_len > 1); let last_but_one_label = frag .vertex_label(frag_nodes_len - 2)? .ok_or(Error::NodeNoLabel(frag_nodes_len - 2))?; // NOTE: The function // `plant_if_needed` assumes that we // want to plant the fragment as the // first child of the node. This // assumption holds in this case, but // not in general. self.plant_if_needed(node, frag)?; let rule_label_pos = self .query_label(last_but_one_label) .expect("the forest was wrongly planted"); result.push(Parent::new(rule_label_pos, 0)); } } } } PaVi::Empty => { result.push(Parent::new(root, 0)); } } result }; for parent in parents.iter() { if !self.has_node(parent.node()) { return Err(Error::IndexOutOfBounds(parent.node(), self.nodes_len())); } } if !is_empty_segment { parents = parents .into_iter() .flat_map(|parent| { self.parents_of(parent.node()).unwrap().filter(|n| { matches!( self.vertex_label(n.node()) .unwrap() .unwrap() .label() .label() .tnt(), Some(TNT::Non(_)) ) }) }) .collect(); } let mut non_empty = false; for atom_child in atom_child_iter { // dbg!(label.label(), atom_child); // Find reduction information. let reduction_info = atom .query_reduction(label.label(), atom_child) .map_err(index_out_of_bounds_conversion)?; let mut stack = parents.clone(); let mut second_stack = Vec::new(); // locate the nodes for reduction_nt in reduction_info.iter().copied().flatten().rev() { while let Some(mut node) = stack.pop() { let mut node_label = self .vertex_label(node.node())? .ok_or_else(|| Error::NodeNoLabel(node.node()))?; if matches!( node_label .label() .label(), GrammarLabelType::TNT(TNT::Non(nt)) if nt == *reduction_nt ) { let sploned_node = self.splone(node.node(), Some(pos), node.edge(), false)?; node_label = self .vertex_label(sploned_node)? .ok_or(Error::NodeNoLabel(sploned_node))?; if node_label.clone_index().is_some() { let mut parent_iter = self.parents_of(sploned_node)?; #[cfg(debug_assertions)] assert_eq!(parent_iter.len(), 1); node = parent_iter.next().unwrap(); #[cfg(debug_assertions)] assert!(self .vertex_label(node.node())? .ok_or(Error::NodeNoLabel(node.node()))? .is_packed()); } else { node = Parent::new(sploned_node, node.edge()); } let parents_iter = self.parents_of(node.node())?; for parent in parents_iter { let parent_label = self .vertex_label(parent.node())? .ok_or_else(|| Error::NodeNoLabel(parent.node()))? .label(); if parent_label.label().rule().is_none() { crate::item::default::print_labels(atom, self.borrow()).unwrap(); self.print_viz("dbg forest.gv").unwrap(); dbg!(parent, parent_label, label, node, sploned_node); panic!("assumption fails"); } second_stack.extend(self.parents_of(parent.node())?.filter(|n| { matches!(self.vertex_label(n.node()), Ok(Some(label)) if matches!( label.label().label().tnt(), Some(TNT::Non(_)))) })); } } } std::mem::swap(&mut stack, &mut second_stack); if stack.is_empty() { break; } } if stack.is_empty() { dbg!( label, atom_child, parents, reduction_info, atom.query_reduction(label.label(), atom_child).unwrap(), is_empty_segment, atom.trace(0, 3, atom_child) .into_iter() .flatten() .collect::>(), ); self.print_viz("dbg forest.gv").unwrap(); #[cfg(test)] crate::item::default::print_labels(atom, self.borrow()).unwrap(); return Err(Error::CannotPlant); } if pos == 4 && matches!(true_source, PaVi::Virtual(_, _, _)) { dbg!(&stack, reduction_info, true_source, pavi); self.print_viz(&format!("pos4ib.gv")).unwrap(); } for parent in stack { let sploned_node = self.splone(parent.node(), None, parent.edge(), false)?; self.plant(sploned_node, fragment, non_empty)?; non_empty = true; } } // If the iterator is empty, assert the fragment has length // one, and do not plant anything. if !non_empty { assert_eq!(fragment.nodes_len(), 1); } let result = if fragment.nodes_len() == 2 { let root_label = fragment_root_label; let leaf_label = fragment .vertex_label(1 - fragment_root)? .ok_or(Error::NodeNoLabel(1 - fragment_root))?; // it has been planted, so should be safe. let node = self .query_label(root_label) .expect("root label was not found"); let edge = { let mut result = None; for (index, child) in self.children_of(node)?.enumerate() { if matches!(self.vertex_label(child)?, Some(child_label) if child_label == leaf_label) { result = Some(index); break; } } if let Some(result) = result { result } else { unreachable!("the forest is wrongly planted"); } }; // dbg!(node, edge, root_label, leaf_label); PaVi::Parent(node, edge) } else { assert_eq!( fragment.nodes_len(), 1, "a virtual fragment should consist of a single terminal node." ); let root_label = fragment_root_label; let pavi_parent = pavi.parent().expect( "When we insert a virtual fragment, the forest_source of the label must be a parent.", ); let nth_child = self.nth_child(pavi_parent.node(), pavi_parent.edge())?; let nth_child_label = self .vertex_label(nth_child)? .ok_or(Error::NodeNoLabel(nth_child))? .label() .label(); let error_str = "When we insert a virtual fragment, the \ forest source of the label must point to \ a non-terminal node"; let nt = match nth_child_label.tnt().expect(error_str) { TNT::Non(nt) => nt, _ => { dbg!(nth_child, nth_child_label); panic!("{error_str}"); } }; let t = match root_label.label().label().tnt().unwrap() { TNT::Ter(t) => t, _ => { dbg!(root_label); panic!("a virtual fragment should consist of a single terminal node") } }; PaVi::Virtual(nt, t, nth_child) }; Ok(result) } } #[cfg(test)] mod genins_test { use super::*; use crate::item::default::leaf; use grammar::test_grammar_helper::*; #[test] fn test_generate_fragment() -> Result<(), Box> { let grammar = new_notes_grammar()?; let atom = DefaultAtom::from_grammar(grammar)?; #[cfg(feature = "test-print-viz")] atom.print_nfa("genins nfa.gv")?; let fragment = generate_fragment([72.into(), TNT::Non(0).into()], 0)?; let mut test_fragment = leaf!( GrammarLabel::new(GrammarLabelType::from(72), 0), GrammarLabel ); test_fragment.plant( 0, leaf!( GrammarLabel::new(GrammarLabelType::from(TNT::Non(0)), 0), GrammarLabel ), false, )?; assert_eq!(fragment, test_fragment); // virtual fragments println!("nt = 0, t = 3"); let virtual_fragment = virtual_generate_fragment(&atom, 0, 3, 0)?; assert_eq!(virtual_fragment.nodes_len(), 7); let virtual_node = virtual_fragment.vertex_label(5)?.unwrap().label(); let test_fragment = generate_fragment( [ TNT::Non(0).into(), 2.into(), TNT::Non(1).into(), 8.into(), TNT::Non(2).into(), virtual_node.label(), TNT::Ter(3).into(), ], 0, )?; crate::item::default::print_labels(&atom, &virtual_fragment)?; assert_eq!(virtual_fragment, test_fragment); #[cfg(feature = "test-print-viz")] virtual_fragment.print_viz("virtual fragment (0, 3).gv")?; println!("nt = 3, t = 2"); let virtual_fragment = virtual_generate_fragment(&atom, 3, 2, 1)?; let test_fragment = generate_fragment([TNT::Non(3).into(), 38.into(), TNT::Ter(2).into()], 1)?; crate::item::default::print_labels(&atom, &virtual_fragment)?; assert_eq!(virtual_fragment, test_fragment); #[cfg(feature = "test-print-viz")] virtual_fragment.print_viz("virtual fragment (3, 2).gv")?; // querying reductions assert!(matches!(atom.query_reduction(17, 9), Ok(Some(&[1])))); assert!(matches!(atom.query_reduction(35, 9), Ok(Some(&[1, 2])))); assert!(matches!(atom.query_reduction(35, 25), Ok(Some(&[2])))); Ok(()) } #[test] fn test_reduction() -> Result<(), Box> { let grammar = new_paren_grammar()?; let atom = DefaultAtom::from_grammar(grammar)?; #[cfg(feature = "test-print-viz")] atom.print_nfa("genins nfa.gv")?; // querying reductions println!("{:?}", atom.query_reduction(32, 17)?); // assert!(matches!(atom.query_reduction(35, 25), Ok(Some(&[2])))); Ok(()) } }